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We consider positive functions h=h(x) defined for x # R+
0 . Conditions for the

existence of a power series N(x)=� cnxn, cn�0, with the property

d1�h(x)�N(x)�d2 , x�0,

for some constants d1 , d2 # R+, are investigated in [J. Clunie and T. Ko� vari,
Canad. J. Math. 20 (1968), 7�20; P. Erdo� s and T. Ko� vari, Acta Math. Acad. Sci.
Hung. 7 (1956), 305�316; U. Schmid, Complex Variables 18 (1992), 187�192;
U. Schmid, J. Approx. Theory 83 (1995), 342�346]. In this paper, methods are
discussed which allow for a given function h the construction of the coefficients cn ,
n # N0 , for the above defined power series N and to find suitable constants d1

and d2 . We also study the power series H(x)=� xn�un , where we set un=
sup[xn�h(x), x�0], for n # N0 , and the relation between h and H concerning the
above stated inequalities. � 1998 Academic Press

1. INTRODUCTION

Let h: R+
0 � R+ be rapidly growing, i.e.,

xn�h(x) � 0 for x � �, \n # N. (1)

The study of the question of whether there exists a power series N(x)=
� cnxn, cn�0, with

d1�h(x)�N(x)�d2 , x�0, (2)

for some constants d1 , d2 # R+ (notation htN), is of particular interest in
approximation problems [1, 2, 5�8] and in numerical applications. By the
premise cn�0, n # N0 , the power series N has some elementary properties
like monotonicity or convexity, but none of them are presumed by h. The
only reason to require of h condition (1) is to exclude the trivial case,
where N(x) represents a polynomial.
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A solution to problem (2) stated above can be formulated with the aid
of the function

P(x)=max[xn�un , n # N0],

where we set un=sup [xn�h(x), x�0], \n # N0 .
In [10] the author proved the following

Theorem 1. Let h: R+
0 � R+ be rapidly growing. A necessary and

sufficient condition for the existence of a power series, N(x)=� cnxn, cn�0,
with htN is the validity of

h(x)�P(x)�c, x # R+
0 , (3)

for some constant c # R+.

The initial intention of this article is to demonstrate methods for the
construction of the power series N(x) and to find constants d1 , d2 # R+

which satisfy (2). We shall give a solution to this problem in the proof of
Theorem 4 by means of the sequence un=sup[xn�h(x), x�0], n # N0 .

On the other hand there is a natural connection between the function
P(x)=max[xn�un , n # N0] and the power series H(x)=� xn�un . It is easy
to prove that (un)1�n � � for n � �; hence the function H(x) is well
defined for every x # R. One would expect that for an arbitrary function h
satisfying (3) the corresponding power series H solves our approximation
problem (2), i.e., htH. However, we shall see that this is not true for every
h satisfying (3) and that the validity of htH depends mainly on the
growth of h(x) for x � �. Nevertheless we give a complete criterion in
solving this problem with Theorems 2 and 3, respectively.

2. THE POWER SERIES H(x)=� xn�un

For a given positive function h we denote with An , n # N0 , the set of
functions [ y(x)�h(x), y(x)=axn and a # R+] and we set yn(x)=xn�un ,
where un=sup[xn�h(x), x�0]. Then we have with yn # An the maximal
function of An which approximates or rather reaches h from below. This
approximation, however, is of interest only in a finite interval, because for
every n # N0 we obtain, as a consequence of (1), that h(x)�yn(x) � � for
x � �. Now we can ask if it is possible to extend this approximation to
the positive number axis by virtue of the power series H(x)=� yn(x)=
� xn�un . We discuss this question in the following
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Theorem 2. Let h: R+
0 � R+ be rapidly growing and let it satisfy (3).

We set vn=un+1 �un , \n # N0 . A necessary and sufficient condition for

htH (4)

is the existence of a positive constant d<1 and an integer z such that

vn�dvn+z , \n # N0 . (5)

Proof of Theorem 2. Sufficiency. The sequence [vn , n # N0] is increasing
because u2

n+1=(sup[xn+1�h(x), x�0])2=sup[(xn+2�h(x)) V (xn�h(x)), x�0]
�sup[xn+2�h(x), x�0] V sup[xn�h(x), x�0]=un+2un, i.e., vn+1=un+2�un+1

�un+1�un=vn .
From this we obtain for every n # N0

vz+1
n un �un+z+1= `

z

i=0

vn�vn+i�vn�vn+z�d,

and

v&z&1
n+z+1un+z+1 �un= `

z

i=0

vn+i �vn+z+1�vn�vn+z�d.

With s=z+1 it follows that

vs
nun�un+s�d (6)

and

v&s
n+sun+s �un�d, \n # N0 . (7)

Now let us formulate two lemmas in advance.

Lemma 1. For i, n # N0 , x # R+
0 , and

(a) for i�n and x�vn&1 or
(b) for i�n and x�vn we have

xi�ui�xn�un .

Proof. Condition (a) in connection with the increasing of the sequence
[vn , n # N0] implies that

xn&i�vn&i
n&1� `

n&i

k=1

vn&k= `
n&i

k=1

un&k+1 �un&k=un�ui , i.e., xi�ui�xn�un .

Part (b) of Lemma 1 follows in the same way. K
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An immediate consequence of Lemma 1 is that the function P(x)=
max[xn�un , n # N0] has the following representation for x�v0

P(x)=xn�un , x # [vn&1 , vn), n # N. (8)

Lemma 2(a). For m, k # N and x # [v(m&1) s , vms) we have

(xms+ks�ums+ks)�P(x)�d k.

Proof. By the definition of P it follows that

P(x)�xms�ums , for x # [v(m&1) s , vms). (9)

Consequently, by (6) and (9), we obtain

(xms+ks�ums+ks)�P(x)�(xms+ks�ums+ks)�(xms�ums)=xksums �ums+ks

�vks
msums�ums+ks= `

k

i=1

vs
msums+(i&1) s �ums+is

� `
k

i=1

vs
ms+(i&1) s ums+(i&1) s �ums+is�d k. K

Lemma 2(b). For m�3 and x # [v(m&1) s , vms) we have

(xms&ks�ums&ks)�P(x)�d k&1, where 2�k�m.

Proof. Again by the definition of P it follows that

P(x)�xms&s�ums&s , for x # [v(m&1) s , vms). (10)

Hence, by (7) and (10), we obtain

(xms&ks�ums&ks)�P(x)�(xms&ks�ums&ks)�(xms&s�ums&s)

=xs&ksums&s �ums&ks�vs&ks
ms&sums&s �ums&ks

= `
k&1

i=1

v&s
ms&sums&is �ums&(i+1) s

� `
k&1

i=1

v&s
ms&isums&is �ums&(i+1) s�d k&1. K

Using Lemma 1(b) for 0�i�s&1, k�1, and 0�x�vms we obtain

xms+ks+i�ums+ks+i�xms+ks�ums+ks ,
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and consequently

:
s&1

i=0

xms+ks+i�ums+ks+i�sxms+ks�ums+ks . (11)

In the same way, using Lemma 1(a) for 0�i�s&1, 2�k<m, and
x�vms&s , we get

:
s&1

i=0

xms&ks&i�ums&ks&i�sxms&ks�ums&ks . (12)

Finally, by (11), (12), and Lemma 2, we have for every m�3 and
x # [v(m&1)s , vms)

\ :
�

n=0

xn�un+<P(x)

=\1�u0+ :
ms&2s

n=1

xn�un+ :
ms+s&1

n=ms&2s+1

xn�un+ :
�

n=ms+s

xn�un+<P(x)

=\ :
m&1

k=2

:
s&1

i=0

xms&ks&i�ums&ks&i+1�u0+ :
ms+s&1

n=ms&2s+1

xn�un

+ :
�

k=1

:
s&1

i=0

xms+ks+i�ums+ks+i+<P(x)

�\s :
m&1

k=2

xms&ks�ums&ks+3sP(x)+s :
�

k=1

xms+ks�ums+ks+<P(x)

�s :
m&1

k=2

d k&1+3s+s :
�

k=1

d k

�s :
�

k=1

d k+3s+s :
�

k=1

d k

=s(3&d)�(1&d )=(z+1)(3&d)�(1&d ).

For m=2 or m=1 the above estimation follows in the same way, using
only (11) and Lemma 2(a).

In the interval x # [0, v0) we have P(x)=1�u0=P(v0); therefore the
inequality

\ :
�

n=0

xn�un+<P(x)�(z+1)(3&d )�(1&d ) (13)

holds for every x�0.
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Comparing (13) and our assumption (3), we obtain the desired inequalities

(1&d )�((z+1)(3&d ))�h(x)<\ :
�

n=0

xn�un+�c, for x # R+
0 .

Necessity. Let us assume that condition (5) is not satisfied by h. Then
for every integer s we can find an index nS # N0 with

vns
�vns+s>(1�2)1�s.

For i�s we have

vns
�vns+i�vns

�vns+s>(1�2)1�s.

Hence we get for every s # N

vs
ns

uns
�uns+s= `

s&1

i=0

vns
�vns+i>1�2. (14)

On the other hand we have for every n # N0 and k�2

vk
n un�un+k= `

k&1

i=0

vn�vn+i� `
k&2

i=0

vn�vn+i=vk&1
n un�un+k&1. (15)

Using (14) and (15) we obtain for every s # N

\ :
�

n=0

vn
ns

�un+<P(vns
)�\ :

s

k=1

vns+k
ns

�uns+k+<(vns
ns

�uns
)

= :
s

k=1

vk
ns

uns
�uns+k>s�2.

Comparing the above estimation with our assumption (3) it follows that
h(vns

)���
n=0 vn

ns
�un�2c�s � 0, for s � �, which is in contradiction to (4).

Corollary. Let h: R+
0 � R+ be rapidly growing and let it satisfy (3).

(a) If there is a positive constant d<1 with

vn�vn+1�d, \n # N0 ,

then we have

(1&d )�2(3&d )�h(x)< :
�

n=0

xn�un�c, for x # R+
0 .

(b) If vn �vn+1 � 1, for n � �, then htH is not satisfied.
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Proof. (a) follows directly from Theorem 2 with z=1.

(b) Let d<1 be an arbitrary positive constant. If we can find for
every s # N an index ns # N0 with vns

�vns+s>d, then condition (4) is not
satisfied by h.

The sequence vn�vn+1 is convergent, i.e., lim vn�vn+1=1. Hence there
exists for every s # N an index ns # N0 with

vn�vn+1>d 1�s, \n�ns , (16)

and therefore with (16) it follows that

vns
�vns+s= `

s&1

i=0

vns+i �vns+i+1>(d 1�s)s=d. K

Example. We consider the function h(x)=xb ln x, for x�1 and an
arbitrary constant b>0. Then we have htH, or more precisely

(1&e&1�2b)�2(3&e&1�2b)�xb ln x< :
�

n=0

xne&n2�4b�e1�16b, for x�1.

First of all the function h(x)=xb ln x is investigated in [9] for b=1, where
we get

xln x�P(x)�e1�16, for x�1.

In the same way we get for an arbitrary b>0

h(x)�P(x)�e1�16b, for x�1,

i.e., the function h(x)=xb ln x satisfies condition (3), for x�1, with the
constant c=e1�16b.

On the other hand we have un=sup [xn�h(x), x�1]=en2�4b. Conse-
quently we get vn=un+1 �un=en�2b&1�4b and vn�vn+1=e&1�2b. Hence, by
virtue of our corollary, it follows with d=e&1�2b that

(1&e&1�2b)�2(3&e&1�2b)�xb ln x< :
�

n=0

xne&n2�4b�e1�16b, for x�1.

Now let us turn to the question of whether there exist positive functions
h with an arbitrarily strong growth and satisfying htH. We shall see that
our example stated above represents a natural limit of growth for all
functions h satisfying htH. This will be proved in
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Theorem 3. Let h: R+
0 � R+ be rapidly growing with htH. Then there

exist constants a>1 and b>0 with

h(x)�xb ln x, for x�a.

Proof of Theorem 3. We set for t�ln v0 , f (t)=ln P(et), i.e., f (t)=
mt&ln um , for t # [ln vm&1 , ln vm), m # N. By virtue of Theorem 2 there
exist a positive constant d<1 and an integer z with vn�dvn+z , \n # N0 .
We define for every n # N0 , tn=ln v0+np, where p=&ln d. It follows that

p�ln vn+z&ln vn , \n # N0 . (17)

Based on the above definition of the function f we can find for every n # N
an index mn with

f (tn)=mn tn&ln umn
, (18)

and

ln vmn&1�tn<ln vmn
. (19)

Using (17) and (19) we obtain ln vnz=ln v0+�n
i=1 (ln viz&ln v(i&1) z)�

ln v0+np�ln vmn&1 , i.e., vnz�vmn&1 , and therefore we have

mn�nz+1. (20)

By (18), (20), and the convexity of f we have for every n # N ( f (tn)&
f (tn&1))�p=( f (tn)& f (tn&1))�(tn&tn&1)�f $l (tn)�mn�nz+1, i.e.,

f (tn)& f (tn&1)�p(nz+1). (21)

Using (21) we obtain for every constant s>0, t�s, and t # [tn&1 , tn)

f (t)=f (t0)+ :
n&1

i=1

( f (ti)& f (ti&1))+ f (t)& f (tn&1)

�f (t0)+ :
n

i=1

( f (ti)& f (ti&1))�f (t0)+ :
n

i=1

p(iz+1)

=f (ln v0)+ pzn(n+1)�2+ pn

�f (ln v0)+ pz((t&ln v0)�p+1)((t&ln v0)�p+2)�2+ p((t&ln v0)�p+1)

�rt2,
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where r>0 is a suitable constant which depends on s, p, z, and v0 . Hence
we get

P(x)�xr ln x, for x�es. (22)

From our assumption htH it follows, in view of Theorem 1, that there
exists a constant c>0 with h(x)�P(x)�c, for x�0. Comparing this result
with inequality (22) we obtain for suitable constants a>1 and b>0,
h(x)�xb ln x, for x�a. K

In some mathematical disciplines even power series with non-negative
coefficients are of special importance. An example of this kind is the theory
of orthogonal polynomials for weights on the real line. D. S. Lubinsky
[6, 7] introduces for a weight h(x)=eQ(x), where Q is even and convex, the
following power series

GQ(x)=1+ :
�

n=1

(x�qn)2n e2Q(qn)n&1�2

with qn
n e&Q(qn)=max[xne&Q(x), x�0]. Accordingly defined is GQ�2(x) (see

also V. Totik [11]).
Using Laplace's method he demonstrates that

GQ(x)=- ?T(x) e2Q(x)(1+O(Q(x)&1�2 (ln x)&3�2)), x � �,

where T(x)=1+xQ"(x)�Q$(x).
This type of result is useful in the above-mentioned theory. The power

series GQ and GQ�2 can be expressed in terms of the sequence un=
sup [xn�h(x), x�0] as

GQ(x)=1+ :
�

n=1

(xn�un)2 n&1�2

and

GQ�2(x)=1+ :
�

n=1

(x2n�u2n) n&1�2, respectively.

As a direct consequence of Theorem 2 we are able to formulate a necessary
and sufficient condition for h(x)t� x2n�u2n , namely, that the asymptotic
relation h(x)t� x2n�u2n is synonymous with h(- x)t� xn�u2n and, using
Theorem 2, with

wn�dwn+z , \n # N0 ,

where wn=u2(n+1) �u2n (sup [xn�h(- x), x�0]=sup [x2n�h(x), x�0]=u2n).
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More generally we get in the same way conditions for h(x)t� xkn�ukn

for an arbitrary k # N.

3. THE CONSTRUCTION OF A POWER SERIES
N(x)=� cnxn, cn�0, WITH htN

Theorems 2 and 3 show that the asymptotic relation htH is not given
for every function h satisfying (3). But at least we have the existence of a
power series N(x)=� cn xn, cn�0, with htN. We shall be concerned with
the construction of this power series in the following

Theorem 4. Let h: R+
0 � R+ be rapidly growing and let it satisfy (3).

Then for every positive d<1 we can select a subsequence [unk
, k # N0] from

the sequence [un , n # N0] with

(1&d )�4�h(x)� :
�

k=0

xnk�unk
�c�d, for x�0.

Proof of Theorem 4. To construct the desired subsequence [unk
, k # N0]

we formulate the next

Lemma 3. We define for every n, s # N0

A(n, s)=un vs
n�un+s and B(n, s)=un+sv&s

n+s �un .

Then we have

(a) A(n, s+1)�A(n, s) and B(n, s+1)�B(n, s).

(b) lims � � A(n, s)=lims � � B(n, s)=0.

(c) A(n, s)�1 and B(n, s)�1.

Proof. (a) The sequence vn is increasing (proof of Theorem 2); hence
for s�1 we have

A(n, s)= `
s&1

i=0

vn�vn+i� `
s

i=0

vn�vn+i=A(n, s+1),

and

B(n, s)= `
s&1

i=0

vn+i �vn+s� `
s

i=0

vn+i �vn+s+1=B(n, s+1).
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(b) To verify that vn � �, for n � �, we assume the contrary vn�c,
\n # N0 , for some constant c>0. Then we have

un�cnu0 , \n # N0 . (i)

On the other hand we get

un=sup[xn�h(x), x�0]�(2c)n�h(2c). (ii)

Comparing (i) and (ii) it follows that (2c)n�h(2c)�cnu0 , i.e., 2n�u0h(2c),
\n # N0 , which is impossible.

As a consequence of limn � � vn=� we obtain for every n # N0

A(n, s)= `
s&1

i=0

vn�vn+i�vn�vn+s&1 � 0, for s � �,

and in the same way lims � � B(n, s)=0.

(c) follows immediately from part (a) of this lemma and the fact that
B(n, 0)=A(n, 0)=1. K

Now we are able to define for every positive d<1 a subsequence
[unk

, k # N0] of the sequence [un , n # N0] with the desired property described
in Theorem 4.

Put un0
=u0 . We define unk+1

, supposing that unk
is already defined, as

follows: Let us denote with sk # N the smallest integer with

A(nk , sk)<d (23)

and

B(nk , sk)<d. (24)

Due to Lemma 3 this choice of sk # N is always possible and therefore at
least one of the following inequalities (25, 26) holds,

A(nk , sk&1)�d (25)

or

B(nk , sk&1)�d. (26)

We define unk+1
=unk+sk&1 . Since A(nk , 1)=1 we have sk�2, \k # N0 .
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In connection with (23) and Lemma 3(a) it follows that

unk
vnk+2&nk

nk
�unk+2

=A(nk , nk+2&nk)=A(nk , sk+sk+1&2)�A(nk , sk)<d.

(27)

Using (24) and Lemma 3(a) we get

unk+2
vnk&nk+2

nk+2
�unk

=B(nk , nk+2&nk)=B(nk , sk+sk+1&2)�B(nk , sk)<d.

(28)

With the notation P1(x)=max[xnk�unk
, k # N0], for x�0, we shall prove

the following

Lemma 4. (a) For m�k�3 and x # [vnm&1
, vnm

) we have

(xnm&k�unm&k
)�P1(x)�{d k�2&1,

d (k&1)�2,
for even k,
for odd k.

(b) For m # N, k�2 and x # [vnm&1
, vnm

) we have

(xnm+k�unm+k
)�P1(x)�{d k�2,

d (k&1)�2,
for even k,
for odd k.

Proof. First of all we set for every m # N0 ynm
(x)=xnm�unm

. Then P1 has
the following representation in the interval [vnm&1

, vnm
)

P1(x)={ynm&1
(x),

ynm
(x),

for x # [vnm&1
, wm),

for x # [wm , vnm
),

where wm=(unm
�unm&1

)1�(nm&nm&1) represents, for every m # N, the x-coordinate
of the intersection-point of ynm&1

(x) and ynm
(x).

Hence we have for x # [vnm&1
, vnm

)

P1(x)� ynm&1
(x) and P1(x)� ynm

(x). (29)

To prove Lemma 4(a) we get by (29)

(xnm&k�unm&k
)�P1(x)�(xnm&k�unm&k

)�(xnm&1�unm&1
)

=unm&1
xnm&k&nm&1�unm&k

�unm&1
vnm&k&nm&1

nm&1
�unm&k

.
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For even k�4 and using (28) we have

unm&1
vnm&k&nm&1

nm&1
�unm&k

=unm&1
vnm&2&nm&1

nm&1
�unm&2

`
k�2&1

i=1

unm&2i
vnm&2(i+1)&nm&2i

nm&1
�unm&2(i+1)

� `
k�2&1

i=1

unm&2i
vnm&2(i+1)&nm&2i

nm&2i
�unm&2(i+1)

<d k�2&1,

where we use for the first inequality the fact that unm&1
vnm&2&nm&1

nm&1
�unm&2

=

B(nm&2 , nm&1&nm&2)�1 (Lemma 3(c)). For odd k�3 and using (28)

unm&1
vnm&k&nm&1

nm&1
�unm&k

= `
(k&3)�2

i=0

unm&2i&1
vnm&2i&3&nm&2i&1

nm&1
�unm&2i&3

� `
(k&3)�2

i=0

unm&2i&1
vnm&2i&3&nm&2i&1

nm&2i&1
�unm&2i&3

<d (k&1)�2.

Now let us prove Lemma 4(b), where we have by (29)

(xnm+k�unm+k
)�P1(x)�(xnm+k�unm+k

)�(xnm�unm
)=unm

xnm+k&nm�unm+k

�unm
vnm+k&nm

nm
�unm+k

.

For even k�2 and using (27) we have

unm
vnm+k&nm

nm
�unm+k

= `
k�2&1

i=0

unm+2i
vnm+2(i+1)&nm+2i

nm
�unm+2(i+1)

� `
k�2&1

i=0

unm+2i
vnm+2(i+1)&nm+2i

nm+2i
�unm+2(i+1)

<d k�2.

Finally for odd k�3 and again using (27) we get

unm
vnm+k&nm

nm
�unm+k

=unm
vnm+1&nm

nm
�unm+1

`
(k&1)�2

i=1

unm+2i&1
vnm+2i+1&nm+2i&1

nm
�unm+2i+1

� `
(k&1)�2

i=1

unm+2i&1
vnm+2i+1&nm+2i&1

nm+2i&1
�unm+2i+1

<d (k&1)�2,

considering that by virtue of Lemma 3(c) we have unm
vnm+1&nm

nm
�unm+1

=
A(nm , nm+1&nm)�1. K
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As a consequence of Lemma 4(a) we get for every m�3 and x # [vnm&1
, vnm

)

\ :
m

k=3

xnm&k�unm&k+<P1(x)�2 :
�

i=1

d i. (30)

To verify (30) let us consider the case where m is an even integer. Then we
have

\ :
m

k=3

xnm&k�unm&k+<P1(x)

=\ :
m�2&1

i=1

xnm&2i&1�unm&2i&1+<P1(x)+\ :
m�2

i=2

xnm&2i�unm&2i+<P1(x)

� :
m�2&1

i=1

d i+ :
m�2&1

i=1

d i�2 :
�

i=1

d i.

Accordingly we treat the case where m is an odd integer.
As a consequence of Lemma 4(b) we get in the same way for every m # N

\ :
�

k=2

xnm+k�unm+k+<P1(x)�2 :
�

i=1

d i. (31)

Using (30) and (31) we obtain for m�3 and x # [vnm&1
, vnm

)

\ :
�

k=0

xnk�unk+<P1(x)

=\ :
m

k=3

xnm&k�unm&k
+ :

4

k=1

xnm&3+k�unm&3+k
+ :

�

k=2

xnm+k�unm+k+<P1(x)

�2 :
�

i=1

d i+4+2 :
�

i=1

d i=4�(1&d ).

Using only (30) we get the above estimation for m=2 and m=1. Finally
in the interval x # [0, v0) we have P1(x)=1�u0=P1(v0), and therefore the
inequality

1�\ :
�

k=0

xnk�unk+<P1(x)�4�(1&d ) (32)

holds for every x�0.
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We have already mentioned (proof of Theorem 2, (8)) that for x # [vnm&1
, vnm

)
the function P has the representation

P(x)=xi�ui , for x # [vi&1 , vi), (33)

where nm&1<i�nm .
With the aid of Lemma 1 we get for m # N, x�vnm&1

and i>nm&1

vi
nm&1

�ui�vnm&1
nm&1

�unm&1
, (34)

and for x=vnm
and i�nm

vi
nm

�ui�vnm
nm

�unm
. (35)

Based on our definition of the subsequence [unk
, k # N0] we have for every

k # N0 that at least one of the inequalities (25), (26) holds. Hence for every
m # N at least one of the following estimations (36), (37) holds:

unm&1
vnm&nm&1

nm&1
�unm

=A(nm&1 , sm&1&1)�d, (36)

unm
vnm&1&nm

nm
�unm&1

=B(nm&1 , sm&1&1)�d. (37)

First let us assume that (36) holds. Then for x # [vnm&1
, vnm

) we get by (29),
(33), and (34)

P1(x)�P(x)=P1(x)�(xi�ui)�(xnm�unm
)�(xi�ui)�(vnm

nm&1
�unm

)�(vi
nm&1

�ui)

�(vnm
nm&1

�unm
)�(vnm&1

nm&1
�unm&1

)=unm&1
vnm&nm&1

nm&1
�unm

�d.

Now let us assume that (37) holds. Then we get by (29), (33), and (35)

P1(x)�P(x)=P1(x)�(xi�ui)�(xnm&1�unm&1
)�(xi�ui)�(vnm&1

nm
�unm&1

)�(vi
nm

�ui)

�(vnm&1
nm

�unm&1
)�(vnm

nm
�unm

)=unm
vnm&1&nm

nm
�unm&1

�d.

In both cases, (36) and (37), we get for m # N and x # [vnm&1
, vnm

)

P1(x)�P(x)�d.

For x # [0, v0) we have P1(x)=P(x)=1�u0 . Hence it follows that

1�P1(x)�P(x)�d, for x�0. (38)

Comparing (32), (38), and our assumption (3) we finally obtain

(1&d )�4�h(x)� :
�

k=0

xnk�unk
�c�d, for x�0.
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Remarks. (a) In [4] Erdo� s and Ko� vari construct a power series
N(x)=� cnxn, cn�0, with MtN, where M(x) is the maximum modulus
of an entire function f (z), z # C. Their construction is mainly based on the
convexity of the function F(t)=ln M(et) and the fact that M(x) is the
maximum modulus of an entire function.

The construction method shown as proof of Theorem 4 for the power
series N(x)=� cn xn, cn�0, with htN, gets rid of all additional
requirements on h(x). We only assume that h(x) grows faster than any
power of x at infinity, to ensure that N(x) does not represent a polynomial.

(b) Very often even power series are of special importance (see for
example page 9). Regarding h(- x) instead of h(x) in Theorem 4 and 1,
respectively, we get an even power series N(x)=� cnx2n, cn�0, with
htN.
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