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We consider positive functions 7 =h(x) defined for x e R, . Conditions for the
existence of a power series N(x)=3 ¢,x", ¢, >0, with the property

d, <h(x)/N(x)<d,, x=0,

for some constants d;,d, € R", are investigated in [J. Clunie and T. Kovari,
Canad. J. Math. 20 (1968), 7-20; P. Erdés and T. Kovari, Acta Math. Acad. Sci.
Hung. 7 (1956), 305-316; U. Schmid, Complex Variables 18 (1992), 187-192;
U. Schmid, J. Approx. Theory 83 (1995), 342-346]. In this paper, methods are
discussed which allow for a given function / the construction of the coefficients c,,,
neN,, for the above defined power series N and to find suitable constants d,
and d,. We also study the power series H(x)=)> x"/u,, where we set u,=
sup{x"/h(x), x>0}, for ne Ny, and the relation between / and H concerning the
above stated inequalities.  © 1998 Academic Press

1. INTRODUCTION
Let iz R — R™* be rapidly growing, i.e.,
x"/h(x)— 0 for x— o0, VneN. (1)

The study of the question of whether there exists a power series N(x)=
> c,x", ¢, =0, with

dy <h(x)/N(x)<d,, x=0, (2)

for some constants d,, d, € R™ (notation & ~ N), is of particular interest in
approximation problems [ 1, 2, 5-8] and in numerical applications. By the
premise ¢, =0, ne N, the power series N has some elementary properties
like monotonicity or convexity, but none of them are presumed by /4. The
only reason to require of /& condition (1) is to exclude the trivial case,
where N(x) represents a polynomial.
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A solution to problem (2) stated above can be formulated with the aid
of the function

P(x) =max{x"/u,,neN,},

where we set u, =sup {x"/h(x), x>0}, Vne N,.
In [10] the author proved the following

THEOREM 1. Let h: Ry — R* be rapidly growing. A necessary and
sufficient condition for the existence of a power series, N(x)=Y_ ¢, x", ¢, =0,
with h ~ N is the validity of

h(x)/P(x)<c, XeR], (3)

for some constant ce R™.

The initial intention of this article is to demonstrate methods for the
construction of the power series N(x) and to find constants d,,d, e R*
which satisfy (2). We shall give a solution to this problem in the proof of
Theorem 4 by means of the sequence u,, = sup{x"/h(x), x>0}, ne N,.

On the other hand there is a natural connection between the function
P(x) =max{x"/u,,ne Ny} and the power series H(x) =3 x"/u,. It is easy
to prove that (u,)""— oo for n— co; hence the function H(x) is well
defined for every x € R. One would expect that for an arbitrary function £
satisfying (3) the corresponding power series H solves our approximation
problem (2), i.e., i ~ H. However, we shall see that this is not true for every
h satisfying (3) and that the validity of &~ H depends mainly on the
growth of /(x) for x — oo. Nevertheless we give a complete criterion in
solving this problem with Theorems 2 and 3, respectively.

2. THE POWER SERIES H(x) =Y x"/u,

For a given positive function 4 we denote with 4,, ne N, the set of
functions { y(x) <Ah(x), y(x)=ax" and ae R*} and we set y,(x)=x"/u,,
where u, =sup{x"/h(x), x>0}. Then we have with y, € 4, the maximal
function of A, which approximates or rather reaches / from below. This
approximation, however, is of interest only in a finite interval, because for
every ne N, we obtain, as a consequence of (1), that A(x)/y,(x)— oo for
x — oo. Now we can ask if it is possible to extend this approximation to
the positive number axis by virtue of the power series H(x)=>Y y,(x)=
> x"/u,. We discuss this question in the following
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THEOREM 2. Let h: R — R™ be rapidly growing and let it satisfy (3).
We set v,=u, , /u,, YneNy. A necessary and sufficient condition for

h~H (4)
is the existence of a positive constant d <1 and an integer z such that

v, <dv,, ., VneN,. (5)

Proof of Theorem 2.  Sufficiency. The sequence {v,, n€ N} is increasing
because u>, , = (sup{x"""/h(x), x>0} = sup{(x"*?/h(x)) * (x"/h(x)), x =0}
<sup{x""?/h(x), x=0} = sup{x"/h(x), x=0} =u,, , 214, 1.6, U,y =5/t
2un+l/unzvn'

From this we obtain for every ne N,

v;+1un/un+z+1= l_[ Un/vn+z\ )1/Un+7<d
and

Unij::il n+;+1/u}1_n vn+1/vn+ +1\Un/Un+ \d

i=0

With s=z+1 it follows that

vhu,fu, . <d (6)
and

—s
Un+S

un+s/un<da VHGNO. (7)

Now let us formulate two lemmas in advance.

LemMa 1. For i,neN,, xe Ry, and
(a) fori<mand x=v,_, or
(b) fori=n and x <v, we have
xX'u, < x"u,.

Proof. Condition (a) in connection with the increasing of the sequence
{v,,neN,} implies that
n—i n—i
nil>vzfll> 1_[ U= n unfk-kl/unfk:un/uia Le., xl/ui<xn/un'

k=1 k=1

Part (b) of Lemma 1 follows in the same way. |
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An immediate consequence of Lemma 1 is that the function P(x)=
max{x"/u,,neN,} has the following representation for x > v,

P(x)=x"/u,, xelv,_;,v,), neN. (8)

LemMA 2(a). For m,keN and x € [v(,,_ 1)y, U,ng) We have
(X" ) P(x) < d .
Proof. By the definition of P it follows that
P(x)=x""/u

ms» fOI' X € [v(mfl)sa vms)' (9)

Consequently, by (6) and (9), we obtain

(xms Jrks/ums +k,v)/P(x) < (xms A Ups +k.r)/(xms/um.r) = xksums/um.r + ks

k
ks _ Kl
<Umsums/umsJrks_ 1_[ Umsums+(i71)s/ums+is
i=1

K k
Um,\‘+(i—l)Sumxﬂ»(z’f1),\‘/um‘\‘+ixgd . I

e

<

i=1

LEMMA 2(b). For m=3 and x €[ v, 1), V,ns) We have
(x"™s =%y, )P(x)<dF where 2<k<m.
Proof. Again by the definition of P it follows that

P(x)=x""""/u for X €[Vin_1)s> V) (10)

ms —s9

Hence, by (7) and (10), we obtain

(xnu*k'v/umx 7/c,v)/P(x) < (XWIS 71“/”17”7/(s)/(xm'v 7S/umsfs)

_ s —ks s—ks
=X umsfs/umsfksgUmsfsumsfx/umsfks

— —s
- 1_[ Ums7sun7sfis/ums7([+ 1)s

—s k—1
< 1_[ Umsfisumsfis/um.s‘f(i+l)s<d . I

Using Lemma 1(b) for 0<i<s—1, k>1, and 0 <x<v,,, we obtain

ms

ms + ks + i/u <x™s + ks

X ms+ks+i~ Upns + ks>
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and consequently

Z xms+k>\‘+i/ums+l\+l< m‘*»k'y/umxikkx. (11)

In the same way, using Lemma I(a) for 0<i<s—1, 2<k<m, and
X=v we get

ms—s»

s—1
Z anbvikSii/ums ks — t<sxm37ks/umsfks' (12)

Finally, by (11), (12), and Lemma 2, we have for every m>3 and
X€ [U(mfl)sa Ums)

(5,00 oo

:<1/u0+mz Sx”/u,,+ mgi x"u, + i x”/u,,>/P(x)

n=1 n=ms—2s+1 n=ms+s

m—1s—1 ) ms+s—1
=< Z Z xms71€>Yil/umsfksfi+ 1/”0 + Z x"/un

k=2 i=0 n=ms—2s+1

w s—1
+ Z Z xms+k'v+i/um.r+k,v+i>/P(x)

k=1i=0

m—1 w0
< Z xms ks/umr k¥+3SP Z s ks ms+ks>/P(x)

k= =

m—1
<s Y d¥ 435+ Z d*

k=2
<s Z d*+3s+s Z d*
k=1 k=1
=s3—-d)/(1—-d)=(z+1)(3—-d)/(1 —4d).
For m=2 or m=1 the above estimation follows in the same way, using
only (11) and Lemma 2(a).

In the interval xe[0,v,) we have P(x)=1/u,= P(v,); therefore the
inequality

<§ x"/u,,>/P(x)<(z+1)(3—d)/(1—d) (13)

=0

holds for every x>0.
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Comparing (13) and our assumption (3), we obtain the desired inequalities

(l—d)/((z+l)(3—d))<h(x)/<i x"/u,7><c, for xeRy.

=0

Necessity. Let us assume that condition (5) is not satisfied by 4. Then
for every integer s we can find an index ng e N, with

Un\,/vnx+As'> (1/2)1/‘S
For i<s we have
Un:/vn +l/ n /vn +\ (1/2)1/X

Hence we get for every se N

s—1

Ule\unj/unSJrs: 1_[ Un:/vnj+i> 1/2 (14)

On the other hand we have for every ne N, and k >2

v un/un+/ - l_[ Un/vn+l\ l_[ Un/vn+1_ In€71 n/un+kfl' (15)

Using (14) and (15) we obtain for every se N

( y ufjx/un>/P(v,1x) >< o, +k>/(vﬁj/uny)
n=0 k=
=Y ohu, fu, > 5)2
k=1

Comparing the above estimation with our assumption (3) it follows that
h(v, )2 U v" Ju,<2c/s — 0, for s - oo, which is in contradiction to (4).
COROLLARY. Let h: Rf — R™ be rapidly growing and let it satisfy (3)

(a) If there is a positive constant d <1 with
U}1/Un+1<ds VHENOa

then we have

[e’s}

(l—d)/2(3—d)<h(x)/z xX"u,<c,  for xeR;.

-0

(b) Ifv,/v,. =1, for n—> oo, then h ~ H is not satisfied.
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Proof. (a) follows directly from Theorem 2 with z=1.

(b) Let d<1 be an arbitrary positive constant. If we can find for
every se N an index n, e Ny with v, /v, ,,>d, then condition (4) is not

satisfied by 4.

The sequence v, /v,,, is convergent, ie., limwv,/v,,,=1. Hence there
exists for every se N an index n, e N, with

0,/ 1 >d"", Vnz=n,, (16)

and therefore with (16) it follows that

s—1

U /Un +s l—[ Un +1/Un +1+1>(dl/5)~s d I

i=0

blnx

ExamPLE. We consider the function h(x)=x for x>1 and an
arbitrary constant » > 0. Then we have 4 ~ H, or more precisely
(1 _671/21))/2(3 _efl/2b) <xblnx/ z X"€7"2/4b<€1/16b, fOI' x > 1

n=0

First of all the function h(x) =x?""~ is investigated in [9] for b= 1, where
we get

x"¥/P(x) < e, for x>1.
In the same way we get for an arbitrary b >0
h(x)/P(x) < e'/'%?, for x>1,
ie., the function A(x)=x?"* satisfies condition (3), for x>1, with the

constant ¢ = e'/1%,
On the other hand we have u,=sup {x"/h(x), x>1} =¢"/*. Conse-

quently we get v,=u, ,/u,=e"?*~"* and v,/v,.,=e""?". Hence, by
virtue of our corollary, it follows with d =e "% that
(1 _671/21;)/2(3 _efl/2b) <xbln x/ Z xnefnz/étb <el/16b’ fOI' X> 1
n=0

Now let us turn to the question of whether there exist positive functions
h with an arbitrarily strong growth and satisfying & ~ H. We shall see that
our example stated above represents a natural limit of growth for all
functions / satisfying & ~ H. This will be proved in
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THEOREM 3. Let h: R — R™ be rapidly growing with h ~ H. Then there
exist constants a>1 and b >0 with

h(x) < xbix for x>=a.

Proof of Theorem 3. We set for t>=Inv,, f(¢t)=1In P(e"), ie., f(t)=
mt—Inu,, for te[lnv,,_,,Inv,), meN. By virtue of Theorem 2 there
exist a positive constant d<1 and an integer z with v, <dv, ., YneN,.
We define for every ne N, t,=1In v, + np, where p = —In d. It follows that

p<lhv, .—Inv, VneN,. (17)

Based on the above definition of the function f we can find for every ne N
an index m,, with

f‘(tn):mnln_ln umna (18)
and
Inv, <t,<lnv,, . (19)

Using (17) and (19) we obtain Inv,.=Invy+>7 (Inv,.—Ino; .)=>
Invy+np=Inv, _y,ie, v,.2v, _, and therefore we have

m,<nz+1. (20)

By (18), (20), and the convexity of f we have for every neN (f(z,)—
f(tnfl))/p:(f(tn)_f(lnfl))/([n_tnfl) <f‘}(ltn) Smnénz—i— 19 i-e~:

St,) = f(t, ) <p(nz+1). (21)

Using (21) we obtain for every constant s >0, >, and te[¢ t,)

n—1>"*n

FO=Fo)+ S ()= F )+ 0= 111, 1)

n

<o)+ Y ()=t <fla)+ Y, pliz+1)

=f(In vy) + pzn(n+1)/2 + pn

<f(Invo) + pz((1 =1Invy)/p + 1)((1 = Invg)/p +2)/2 + p((t —1Invy)/p + 1)

< rtz,
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where r >0 is a suitable constant which depends on s, p, z, and v,. Hence
we get

P(x) < x"nx, for x=e. (22)

From our assumption iz~ H it follows, in view of Theorem 1, that there
exists a constant ¢ >0 with /(x)/P(x) <c¢, for x >0. Comparing this result
with inequality (22) we obtain for suitable constants ¢>1 and b>0,
h(x)<x?™~ for x=>a. |

In some mathematical disciplines even power series with non-negative
coefficients are of special importance. An example of this kind is the theory
of orthogonal polynomials for weights on the real line. D. S. Lubinsky
[6, 7] introduces for a weight A(x) =2, where Q is even and convex, the
following power series

Go(x)=1+ Y (x/q,)" % n="7>

with glie 2 =max{x"e 2™, x > 0}. Accordingly defined is G,,(x) (see
also V. Totik [11]).
Using Laplace’s method he demonstrates that

Go(x)=/nT(x) e*? (1 + O(Q(x) "> (In x) 7)), X — o0,

where T(x)=14+xQ"(x)/Q’'(x).

This type of result is useful in the above-mentioned theory. The power
series G, and Gy, can be expressed in terms of the sequence u,=
sup {x"/h(x), x>0} as

Go(x)=1+ (x"/u,)*n 12

1

I M8

n

and

n

I8

(x*/u,,) n~ "2, respectively.
1

As a direct consequence of Theorem 2 we are able to formulate a necessary
and sufficient condition for /(x) ~Y x*'/u,,, namely, that the asymptotic

relation /(x) ~Y x*'/u,, is synonymous with h(\/;c) ~ > x"/u,, and, using
Theorem 2, with

w,<dw, ., VneN,,

where w, =y, , 1,/us, (Sup {x”/h(\/;c), x =0} =sup {x*/h(x), x =0} =u,,).
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More generally we get in the same way conditions for A(x) ~ 3 x*/u,,
for an arbitrary ke N.

3. THE CONSTRUCTION OF A POWER SERIES
Nx)=Y c¢,x",¢,=0, WITH h~ N

Theorems 2 and 3 show that the asymptotic relation & ~ H is not given
for every function / satisfying (3). But at least we have the existence of a
power series N(x)=Y c,x", ¢, >0, with 1 ~ N. We shall be concerned with
the construction of this power series in the following

THEOREM 4. Let h: R — R* be rapidly growing and let it satisfy (3
Then for every positive d <1 we can select a subsequence {u Uy, ke No} from
the sequence {u,,ne Ny} with

(1 —d)/4<h(x)/ i xX"fu,, < c/d, for x=0.

Proof of Theorem 4. To construct the desired subsequence {u
we formulate the next

keNg}

nka

LEMMA 3. We define for every n, se N,
A(f’l, S):unqu/uner and B(”’ S):un+>\‘v;17-;\—'x/un'
Then we have

(a) A(n,s+1)<A(n,s) and B(n,s+ 1)< B(n, s).
) lim

(b A(n, s) =1lim B(n, s)=0.
(c) A(n,s)<!1 and B(n,s)<1.

s — 00O s — 0

Proof. (a) The sequence v, is increasing (proof of Theorem 2); hence
for s =1 we have

s—1

n U}’l/v}1+l/ n v /Un+1: (}’l,s+l),

i=0 =
and
s—1

1_[ Un+l/vn+A/ n n+i/Un+s+l=B(nsS+1)'

i=0
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(b) To verify that v, — oo, for n — oo, we assume the contrary v, <c,
VneN,, for some constant ¢ > 0. Then we have

u, < c"ug, VneN,. (1)
On the other hand we get
u, =sup{x"/h(x), x =0} = (2¢)"/h(2c). (ii)

Comparing (i) and (ii) it follows that (2¢)"/h(2¢) < c"u, 1., 2" <ugh(2c),
Vn e N, which is impossible.
As a consequence of lim

v, = 0o we obtain for every ne N,

n— oo n

s—1
A(n’ S): 1_[ Un/vn+i<0n/vn+s—l _)0’ for §— 0,
i=0

and in the same way lim,_,  B(n, s)=0.
(c) follows immediately from part (a) of this lemma and the fact that
B(n,0)=A(n,0)=1. |

Now we are able to define for every positive d<1 a subsequence
{u,,, ke Ny} of the sequence {u,, ne N,} with the desired property described

in Theorem 4.

Put u, =u,. We define u supposing that u,, is already defined, as

Meq1?

follows: Let us denote with s, € N the smallest integer with

A(ny, s,) <d (23)
and

B(n, s;) <d. (24)

Due to Lemma 3 this choice of s, € N is always possible and therefore at
least one of the following inequalities (25, 26) holds,

A(ny, s, —1)=d (25)
or
B(n,, s, —1)>d. (26)

We define Up, =l s 1 Since A(n,,1)=1 we have s, =2, Vke N,.

n+
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In connection with (23) and Lemma 3(a) it follows that

unkv:l,:” ”A/”nkﬁ =A(nie, i — i) = Ay, i+ 5501 — 2) S A(ny, 5) <d.
(27)

Using (24) and Lemma 3(a) we get

Mey2 ::H”k”/“ =B(ni, Ny s o — i) = B(nye, i+ 5501 —2) < Blny, 5,) < d.
(28)

With the notation Py(x)=max{x"/u, , keN,}, for x >0, we shall prove
the following

LemMA 4. (a) Form>=k>=3 and xelv, v, ) we have

(x"m=k/u )/Py(x

M —k

d*?=1, for even k,
d(’"”/2 for odd k.

(b) FormeN, k=2 and xe[v, v, )we have

/2

Y d”=, for even k,
(x ”’*"‘/unm+k)/P1(X)<{d(k1)/25 fO}’ odd k.

Proof.  First of all we set for every me N, y, (x)=x"/u, . Then P, has
the following representation in the interval [v, v, )

P m—1 My
1) = {ynm( ) for xe[won o).

where w,, = (u, /u, )Y"»~"-1) represents, for every m e N, the x-coordinate

m—1

of the intersection-point of y, ~ (x) and y, (x).
Hence we have for xe[v, v, )

m

Pi(x)=y,, (x) and  Py(x)=y, (x). (29)

m

To prove Lemma 4(a) we get by (29)

)

(xnm—k/u /P (x m— k/u i / x”m—l/u

M —k My — 1

n —n
=Uu X'm—k m—1/1y
M1 / m—k

n
< u, v L L l/u
M1 n, 4



498 ULRICH SCHMID

For even k >4 and using (28) we have

u U"vz—k7n117—l/u
n

m—1"n, Mk
k2 —1
— L L | m—20i+1) " m—2i
_u”m—lvnm_l /u”mfz 1_[ u"mfzyvnm_l Ju Uy sy
i=1
k/2—1
< M —2(i+ 1)~ T —2i k/2—1
= l_[ u”mfzgvnmfz,. /u”m—z(Hl) <d ’
i=1
where we use for the first inequality the fact that u, v =2 =y

B(n,, ,,n,, _,—n,_,)<1 (Lemma 3(c)). For odd k> 3 and using (28)

(k—3)/2
Py — ke~ -1 — My —2j—3 My —2j—1
M1V n,, /Ll - l_[ unm—li—lvnm,l /u”m—li—B
i=0
(k—3)/2
< My —2j -3~ My —2i— 1
= 1_[ unm—Zi—lU"m72,71 /unm—Zi—S
i=0
<d(k71)/2

Now let us prove Lemma 4(b), where we have by (29)

(o4t P (X4, )5, ) =, X,
<u, UZ:“‘ ~m U, -
For even k >2 and using (27) we have
k/2—1
unm ”Z::M *"m/unm% = n un,,,,+ziv::’,:+2([+ ! *”m+z,’/un”’+2“+”
i=0
k2 —1
< l_[ un1n+2iUZ:Zi§i-[+l'7nm+2[/unm+2(i+l) <d"?.
i=0

Finally for odd k>3 and again using (27) we get

n —n
k m
U, vt u
My, / M+ k
(k—1)/2
=u vnm+linm/u u nm+2i+17'7m+2i—l/
My ny, M1 M 2i—1 ny, Mo 42041
i=1
(k—1)/2
—n - k—1)/2
< n u, vm+21+] '+ 2i 1/ W <d! )/’
m+2i—1 Ny oi | m+2i+1

i=1

considering that by virtue of Lemma 3(c) we have u, vi"+'"""/u
A(nmanm-%—l_nm)<1' I

m—2

Mo +1
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As a consequence of Lemma 4(a) we get for everym >3 and xe[v, v, )

<§: x"mk/u,,mk>/P1(x)<2 i d'. (30)
k=3 i=1

To verify (30) let us consider the case where m is an even integer. Then we
have

(5 o) rao
k=3
m/2 —1 m/2
:< Z xnmzil/unmz“l>/Pl(x) + < Z xn,nz,'/unmz[)/Pl(x)

i=1

m/2 —1 m/2 —1 [’s)
< Y d+ Y d'<2) d.

i=1 i=1 i=1

Accordingly we treat the case where m is an odd integer.
As a consequence of Lemma 4(b) we get in the same way for every me N

<§ x”"*+k/u,7/l1+k>/Pl(x)<2 i d'. (31)
k=2 i=1

Using (30) and (31) we obtain for m>3 and xe[v, v, )

m

_ R,

_< Z x'm c/u”m7k+
k

=3 k

(RS

o)
Xty o+ D x"m+k/u,1m+k>/P1(X)
k=2

1

di+4+2Y d'=4/(1—d).

1 i=1

<2

M8

2

Using only (30) we get the above estimation for m =2 and m = 1. Finally
in the interval xe [0, vy) we have P,(x)=1/u,= P,(v,), and therefore the
inequality

1<<§ X”"/un,(>/Pu(X)<4/(1—d) (32)

=0

holds for every x>0.
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We have already mentioned (proof of Theorem 2, (8)) that for xe [v, ., v, )

m

the function P has the representation
P(x)=x'[u;, for xel[v,_y,v)), (33)

where n,, <i<n,,.
With the aid of Lemma 1 we get for meN, x<v, andi>n,,_,

My —1

fu, <V, (34)

and for x=v, and i<n

m
vl fu <0, (35)

Based on our definition of the subsequence {u,, , k€ Ny} we have for every
ke N, that at least one of the inequalities (25), (26) holds. Hence for every
me N at least one of the following estimations (36), (37) holds:

O, = Ay S, — 1) 2 d, (36)

m—1 Vlm 1
u. v My 1 — ﬂm/un” :B(n,nflasmfl_l)>d' (37)

n,
mo N, 1—1

First let us assume that (36) holds. Then for xe [v, v, )we get by (29),
(33), and (34)

Py (x)/P(x) = Py(x)/(x"u;) = (X"nfu, )/ (x'ug) = (o) fu, )(v),

= (v fu, )0 )=, o, >d
Now let us assume that (37) holds. Then we get by (29), (33), and (35)
Py (x)/P(x) = Py(xX)/(xXu;) = (X" Vw,, - )(x'fu) = (03w, )/ (), Juy)

= (Unzil/u”m—1)/(1]}1:/”’7/”) = unmvn:” 7nm/u”m—l = d.

[u;)

m—1

In both cases, (36) and (37), we get for me N and xe[v, v, )

x)/P(x)=d.
For xe [0, v,) we have P,(x)= P(x)=1/u,. Hence it follows that
1>=P,(x)/P(x)=d, for x=0. (38)

Comparing (32), (38), and our assumption (3) we finally obtain

(1—=d)/4d<h(x)/ OZO: x"u, <c/d, for x>=0.



APPROXIMATION OF FUNCTIONS, II 501

Remarks. (a) In [4] Erdés and Kovari construct a power series
N(x)=> ¢, x", ¢,=0, with M ~ N, where M(x) is the maximum modulus
of an entire function f(z), z e C. Their construction is mainly based on the
convexity of the function F(z)=1In M(e’) and the fact that M(x) is the
maximum modulus of an entire function.

The construction method shown as proof of Theorem 4 for the power
series N(x)=Y c¢,x", ¢,=0, with h~N, gets rid of all additional
requirements on /4(x). We only assume that /i(x) grows faster than any
power of x at infinity, to ensure that N(x) does not represent a polynomial.

(b) Very often even power series are of special importance (see for
example page 9). Regarding h(\/;c) instead of i(x) in Theorem 4 and 1,
respectively, we get an even power series N(x)=Y c¢,x*, ¢,>0, with
h~N.
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