On the Approximation of Positive Functions by Power Series, II

Ulrich Schmid
Daimler-Benz AG, VEC/ISK, 70567 Möhringen, Germany
Communicated by Doron S. Lubinsky
Received July 5, 1996; accepted in revised form March 15, 1997

We consider positive functions $h=h(x)$ defined for $x \in R_{0}^{+}$. Conditions for the existence of a power series $N(x)=\sum c_{n} x^{n}, c_{n} \geqslant 0$, with the property

$$
d_{1} \leqslant h(x) / N(x) \leqslant d_{2}, \quad x \geqslant 0,
$$

for some constants $d_{1}, d_{2} \in R^{+}$, are investigated in [J. Clunie and T. Kövari, Canad. J. Math. 20 (1968), 7-20; P. Erdős and T. Kövari, Acta Math. Acad. Sci. Hung. 7 (1956), 305-316; U. Schmid, Complex Variables 18 (1992), 187-192; U. Schmid, J. Approx. Theory 83 (1995), 342-346]. In this paper, methods are discussed which allow for a given function h the construction of the coefficients c_{n}, $n \in \mathbb{N}_{0}$, for the above defined power series N and to find suitable constants d_{1} and d_{2}. We also study the power series $H(x)=\sum x^{n} / u_{n}$, where we set $u_{n}=$ $\sup \left\{x^{n} / h(x), x \geqslant 0\right\}$, for $n \in \mathbb{N}_{0}$, and the relation between h and H concerning the above stated inequalities. © 1998 Academic Press

1. INTRODUCTION

Let $h: R_{0}^{+} \rightarrow R^{+}$be rapidly growing, i.e.,

$$
\begin{equation*}
x^{n} / h(x) \rightarrow 0 \quad \text { for } \quad x \rightarrow \infty, \quad \forall n \in \mathbb{N} . \tag{1}
\end{equation*}
$$

The study of the question of whether there exists a power series $N(x)=$ $\sum c_{n} x^{n}, c_{n} \geqslant 0$, with

$$
\begin{equation*}
d_{1} \leqslant h(x) / N(x) \leqslant d_{2}, \quad x \geqslant 0, \tag{2}
\end{equation*}
$$

for some constants $d_{1}, d_{2} \in R^{+}$(notation $h \sim N$), is of particular interest in approximation problems [1,2,5-8] and in numerical applications. By the premise $c_{n} \geqslant 0, n \in \mathbb{N}_{0}$, the power series N has some elementary properties like monotonicity or convexity, but none of them are presumed by h. The only reason to require of h condition (1) is to exclude the trivial case, where $N(x)$ represents a polynomial.

A solution to problem (2) stated above can be formulated with the aid of the function

$$
P(x)=\max \left\{x^{n} / u_{n}, n \in \mathbb{N}_{0}\right\},
$$

where we set $u_{n}=\sup \left\{x^{n} / h(x), x \geqslant 0\right\}, \forall n \in \mathbb{N}_{0}$.
In [10] the author proved the following

Theorem 1. Let $h: R_{0}^{+} \rightarrow R^{+}$be rapidly growing. A necessary and sufficient condition for the existence of a power series, $N(x)=\sum c_{n} x^{n}, c_{n} \geqslant 0$, with $h \sim N$ is the validity of

$$
\begin{equation*}
h(x) / P(x) \leqslant c, \quad x \in R_{0}^{+}, \tag{3}
\end{equation*}
$$

for some constant $c \in R^{+}$.
The initial intention of this article is to demonstrate methods for the construction of the power series $N(x)$ and to find constants $d_{1}, d_{2} \in R^{+}$ which satisfy (2). We shall give a solution to this problem in the proof of Theorem 4 by means of the sequence $u_{n}=\sup \left\{x^{n} / h(x), x \geqslant 0\right\}, n \in \mathbb{N}_{0}$.

On the other hand there is a natural connection between the function $P(x)=\max \left\{x^{n} / u_{n}, n \in \mathbb{N}_{0}\right\}$ and the power series $H(x)=\sum x^{n} / u_{n}$. It is easy to prove that $\left(u_{n}\right)^{1 / n} \rightarrow \infty$ for $n \rightarrow \infty$; hence the function $H(x)$ is well defined for every $x \in R$. One would expect that for an arbitrary function h satisfying (3) the corresponding power series H solves our approximation problem (2), i.e., $h \sim H$. However, we shall see that this is not true for every h satisfying (3) and that the validity of $h \sim H$ depends mainly on the growth of $h(x)$ for $x \rightarrow \infty$. Nevertheless we give a complete criterion in solving this problem with Theorems 2 and 3, respectively.

2. THE POWER SERIES $H(x)=\sum x^{n} / u_{n}$

For a given positive function h we denote with $A_{n}, n \in \mathbb{N}_{0}$, the set of functions $\left\{y(x) \leqslant h(x), y(x)=a x^{n}\right.$ and $\left.a \in R^{+}\right\}$and we set $y_{n}(x)=x^{n} / u_{n}$, where $u_{n}=\sup \left\{x^{n} / h(x), x \geqslant 0\right\}$. Then we have with $y_{n} \in A_{n}$ the maximal function of A_{n} which approximates or rather reaches h from below. This approximation, however, is of interest only in a finite interval, because for every $n \in \mathbb{N}_{0}$ we obtain, as a consequence of (1), that $h(x) / y_{n}(x) \rightarrow \infty$ for $x \rightarrow \infty$. Now we can ask if it is possible to extend this approximation to the positive number axis by virtue of the power series $H(x)=\sum y_{n}(x)=$ $\sum x^{n} / u_{n}$. We discuss this question in the following

Theorem 2. Let h: $R_{0}^{+} \rightarrow R^{+}$be rapidly growing and let it satisfy (3). We set $v_{n}=u_{n+1} / u_{n}, \forall n \in \mathbb{N}_{0}$. A necessary and sufficient condition for

$$
\begin{equation*}
h \sim H \tag{4}
\end{equation*}
$$

is the existence of a positive constant $d<1$ and an integer z such that

$$
\begin{equation*}
v_{n} \leqslant d v_{n+z}, \quad \forall n \in \mathbb{N}_{0} . \tag{5}
\end{equation*}
$$

Proof of Theorem 2. Sufficiency. The sequence $\left\{v_{n}, n \in \mathbb{N}_{0}\right\}$ is increasing because $u_{n+1}^{2}=\left(\sup \left\{x^{n+1} / h(x), x \geqslant 0\right\}\right)^{2}=\sup \left\{\left(x^{n+2} / h(x)\right) *\left(x^{n} / h(x)\right), x \geqslant 0\right\}$ $\leqslant \sup \left\{x^{n+2} / h(x), x \geqslant 0\right\} * \sup \left\{x^{n} / h(x), x \geqslant 0\right\}=u_{n+2} u_{n}$, i.e., $v_{n+1}=u_{n+2} / u_{n+1}$ $\geqslant u_{n+1} / u_{n}=v_{n}$.

From this we obtain for every $n \in \mathbb{N}_{0}$

$$
v_{n}^{z+1} u_{n} / u_{n+z+1}=\prod_{i=0}^{z} v_{n} / v_{n+i} \leqslant v_{n} / v_{n+z} \leqslant d,
$$

and

$$
v_{n+z+1}^{-z-1} u_{n+z+1} / u_{n}=\prod_{i=0}^{z} v_{n+i} / v_{n+z+1} \leqslant v_{n} / v_{n+z} \leqslant d .
$$

With $s=z+1$ it follows that

$$
\begin{equation*}
v_{n}^{s} u_{n} / u_{n+s} \leqslant d \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{n+s}^{-s} u_{n+s} / u_{n} \leqslant d, \quad \forall n \in \mathbb{N}_{0} . \tag{7}
\end{equation*}
$$

Now let us formulate two lemmas in advance.
Lemma 1. For $i, n \in \mathbb{N}_{0}, x \in R_{0}^{+}$, and
(a) for $i \leqslant n$ and $x \geqslant v_{n-1}$ or
(b) for $i \geqslant n$ and $x \leqslant v_{n}$ we have

$$
x^{i} / u_{i} \leqslant x^{n} / u_{n} .
$$

Proof. Condition (a) in connection with the increasing of the sequence $\left\{v_{n}, n \in \mathbb{N}_{0}\right\}$ implies that

$$
x^{n-i} \geqslant v_{n-1}^{n-i} \geqslant \prod_{k=1}^{n-i} v_{n-k}=\prod_{k=1}^{n-i} u_{n-k+1} / u_{n-k}=u_{n} / u_{i}, \quad \text { i.e., } \quad x^{i} / u_{i} \leqslant x^{n} / u_{n}
$$

Part (b) of Lemma 1 follows in the same way.

An immediate consequence of Lemma 1 is that the function $P(x)=$ $\max \left\{x^{n} / u_{n}, n \in \mathbb{N}_{0}\right\}$ has the following representation for $x \geqslant v_{0}$

$$
\begin{equation*}
P(x)=x^{n} / u_{n}, \quad x \in\left[v_{n-1}, v_{n}\right), \quad n \in \mathbb{N} . \tag{8}
\end{equation*}
$$

Lemma 2(a). For $m, k \in \mathbb{N}$ and $x \in\left[v_{(m-1) s}, v_{m s}\right)$ we have

$$
\left(x^{m s+k s} / u_{m s+k s}\right) / P(x) \leqslant d^{k} .
$$

Proof. By the definition of P it follows that

$$
\begin{equation*}
P(x) \geqslant x^{m s} / u_{m s}, \quad \text { for } \quad x \in\left[v_{(m-1) s}, v_{m s}\right) . \tag{9}
\end{equation*}
$$

Consequently, by (6) and (9), we obtain

$$
\begin{aligned}
\left(x^{m s+k s} / u_{m s+k s}\right) / P(x) & \leqslant\left(x^{m s+k s} / u_{m s+k s}\right) /\left(x^{m s} / u_{m s}\right)=x^{k s} u_{m s} / u_{m s+k s} \\
& \leqslant v_{m s}^{k s} u_{m s} / u_{m s+k s}=\prod_{i=1}^{k} v_{m s}^{s} u_{m s+(i-1) s} / u_{m s+i s} \\
& \leqslant \prod_{i=1}^{k} v_{m s+(i-1) s}^{s} u_{m s+(i-1) s} / u_{m s+i s} \leqslant d^{k} .
\end{aligned}
$$

Lemma 2(b). For $m \geqslant 3$ and $x \in\left[v_{(m-1) s}, v_{m s}\right)$ we have

$$
\left(x^{m s-k s} / u_{m s-k s}\right) / P(x) \leqslant d^{k-1}, \quad \text { where } \quad 2 \leqslant k \leqslant m .
$$

Proof. Again by the definition of P it follows that

$$
\begin{equation*}
P(x) \geqslant x^{m s-s} / u_{m s-s}, \quad \text { for } \quad x \in\left[v_{(m-1) s}, v_{m s}\right) . \tag{10}
\end{equation*}
$$

Hence, by (7) and (10), we obtain

$$
\begin{aligned}
\left(x^{m s-k s} / u_{m s-k s}\right) / P(x) & \leqslant\left(x^{m s-k s} / u_{m s-k s}\right) /\left(x^{m s-s} / u_{m s-s}\right) \\
& =x^{s-k s} u_{m s-s} / u_{m s-k s} \leqslant v_{m s-s}^{s-k s} u_{m s-s} / u_{m s-k s} \\
& =\prod_{i=1}^{k-1} v_{m s-s}^{-s} u_{m s-i s} / u_{m s-(i+1) s} \\
& \leqslant \prod_{i=1}^{k-1} v_{m s-i s}^{-s} u_{m s-i s} / u_{m s-(i+1) s} \leqslant d^{k-1} .
\end{aligned}
$$

Using Lemma 1 (b) for $0 \leqslant i \leqslant s-1, k \geqslant 1$, and $0 \leqslant x \leqslant v_{m s}$ we obtain

$$
x^{m s+k s+i} / u_{m s+k s+i} \leqslant x^{m s+k s} / u_{m s+k s},
$$

and consequently

$$
\begin{equation*}
\sum_{i=0}^{s-1} x^{m s+k s+i} / u_{m s+k s+i} \leqslant s x^{m s+k s} / u_{m s+k s} . \tag{11}
\end{equation*}
$$

In the same way, using Lemma 1(a) for $0 \leqslant i \leqslant s-1,2 \leqslant k<m$, and $x \geqslant v_{m s-s}$, we get

$$
\begin{equation*}
\sum_{i=0}^{s-1} x^{m s-k s-i} / u_{m s-k s-i} \leqslant s x^{m s-k s} / u_{m s-k s} . \tag{12}
\end{equation*}
$$

Finally, by (11), (12), and Lemma 2, we have for every $m \geqslant 3$ and $x \in\left[v_{(m-1) s}, v_{m s}\right)$

$$
\begin{aligned}
\left(\sum_{n=0}^{\infty}\right. & \left.x^{n} / u_{n}\right) / P(x) \\
& =\left(1 / u_{0}+\sum_{n=1}^{m s-2 s} x^{n} / u_{n}+\sum_{n=m s-2 s+1}^{m s+s-1} x^{n} / u_{n}+\sum_{n=m s+s}^{\infty} x^{n} / u_{n}\right) / P(x) \\
= & \left(\sum_{k=2}^{m-1} \sum_{i=0}^{m-1} x^{m s-k s-i} / u_{m s-k s-i}+1 / u_{0}+\sum_{n=m s-2 s+1}^{m s-1} x^{n} / u_{n}\right. \\
& \left.+\sum_{k=1}^{\infty} \sum_{i=0}^{s-1} x^{m s+k s+i} / u_{m s+k s+i}\right) / P(x) \\
\leqslant & \left(s \sum_{k=2}^{m-1} x^{m s-k s} / u_{m s-k s}+3 s P(x)+s \sum_{k=1}^{\infty} x^{m s+k s} / u_{m s+k s}\right) / P(x) \\
\leqslant & s \sum_{k=2}^{m-1} d^{k-1}+3 s+s \sum_{k=1}^{\infty} d^{k} \\
\leqslant & s \sum_{k=1}^{\infty} d^{k}+3 s+s \sum_{k=1}^{\infty} d^{k} \\
= & s(3-d) /(1-d)=(z+1)(3-d) /(1-d) .
\end{aligned}
$$

For $m=2$ or $m=1$ the above estimation follows in the same way, using only (11) and Lemma 2(a).

In the interval $x \in\left[0, v_{0}\right)$ we have $P(x)=1 / u_{0}=P\left(v_{0}\right)$; therefore the inequality

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n} / u_{n}\right) / P(x) \leqslant(z+1)(3-d) /(1-d) \tag{13}
\end{equation*}
$$

holds for every $x \geqslant 0$.

Comparing (13) and our assumption (3), we obtain the desired inequalities

$$
(1-d) /((z+1)(3-d)) \leqslant h(x) /\left(\sum_{n=0}^{\infty} x^{n} / u_{n}\right) \leqslant c, \quad \text { for } \quad x \in R_{0}^{+} .
$$

Necessity. Let us assume that condition (5) is not satisfied by h. Then for every integer s we can find an index $n_{S} \in \mathbb{N}_{0}$ with

$$
v_{n_{s}} / v_{n_{s}+s}>(1 / 2)^{1 / s} .
$$

For $i \leqslant s$ we have

$$
v_{n_{s}} / v_{n_{s}+i} \geqslant v_{n_{s}} / v_{n_{s}+s}>(1 / 2)^{1 / s} .
$$

Hence we get for every $s \in \mathbb{N}$

$$
\begin{equation*}
v_{n_{s}}^{s} u_{n_{s}} / u_{n_{s}+s}=\prod_{i=0}^{s-1} v_{n_{s}} / v_{n_{s}+i}>1 / 2 . \tag{14}
\end{equation*}
$$

On the other hand we have for every $n \in \mathbb{N}_{0}$ and $k \geqslant 2$

$$
\begin{equation*}
v_{n}^{k} u_{n} / u_{n+k}=\prod_{i=0}^{k-1} v_{n} / v_{n+i} \leqslant \prod_{i=0}^{k-2} v_{n} / v_{n+i}=v_{n}^{k-1} u_{n} / u_{n+k-1} . \tag{15}
\end{equation*}
$$

Using (14) and (15) we obtain for every $s \in \mathbb{N}$

$$
\begin{aligned}
\left(\sum_{n=0}^{\infty} v_{n_{s}}^{n} / u_{n}\right) / P\left(v_{n_{s}}\right) & \geqslant\left(\sum_{k=1}^{s} v_{n_{s}}^{n_{s}+k} / u_{n_{s}+k}\right) /\left(v_{n_{s}}^{n_{s}} / u_{n_{s}}\right) \\
& =\sum_{k=1}^{s} v_{n_{s}}^{k} u_{n_{s}} / u_{n_{s}+k}>s / 2 .
\end{aligned}
$$

Comparing the above estimation with our assumption (3) it follows that $h\left(v_{n_{s}}\right) / \sum_{n=0}^{\infty} v_{n_{s}}^{n} / u_{n} \leqslant 2 c / s \rightarrow 0$, for $s \rightarrow \infty$, which is in contradiction to (4).

Corollary. Let $h: R_{0}^{+} \rightarrow R^{+}$be rapidly growing and let it satisfy (3).
(a) If there is a positive constant $d<1$ with

$$
v_{n} / v_{n+1} \leqslant d, \quad \forall n \in \mathbb{N}_{0}
$$

then we have

$$
(1-d) / 2(3-d) \leqslant h(x) / \sum_{n=0}^{\infty} x^{n} / u_{n} \leqslant c, \quad \text { for } \quad x \in R_{0}^{+}
$$

(b) If $v_{n} / v_{n+1} \rightarrow 1$, for $n \rightarrow \infty$, then $h \sim H$ is not satisfied.

Proof. (a) follows directly from Theorem 2 with $z=1$.
(b) Let $d<1$ be an arbitrary positive constant. If we can find for every $s \in \mathbb{N}$ an index $n_{s} \in \mathbb{N}_{0}$ with $v_{n_{s}} / v_{n_{s}+s}>d$, then condition (4) is not satisfied by h.

The sequence v_{n} / v_{n+1} is convergent, i.e., $\lim v_{n} / v_{n+1}=1$. Hence there exists for every $s \in \mathbb{N}$ an index $n_{s} \in \mathbb{N}_{0}$ with

$$
\begin{equation*}
v_{n} / v_{n+1}>d^{1 / s}, \quad \forall n \geqslant n_{s}, \tag{16}
\end{equation*}
$$

and therefore with (16) it follows that

$$
v_{n_{s}} / v_{n_{s}+s}=\prod_{i=0}^{s-1} v_{n_{s}+i} / v_{n_{s}+i+1}>\left(d^{1 / s}\right)^{s}=d .
$$

Example. We consider the function $h(x)=x^{b \ln x}$, for $x \geqslant 1$ and an arbitrary constant $b>0$. Then we have $h \sim H$, or more precisely

$$
\left(1-e^{-1 / 2 b}\right) / 2\left(3-e^{-1 / 2 b}\right) \leqslant x^{b \ln x} / \sum_{n=0}^{\infty} x^{n} e^{-n^{2} / 4 b} \leqslant e^{1 / 16 b}, \quad \text { for } \quad x \geqslant 1 .
$$

First of all the function $h(x)=x^{b \ln x}$ is investigated in [9] for $b=1$, where we get

$$
x^{\ln x} / P(x) \leqslant e^{1 / 16}, \quad \text { for } \quad x \geqslant 1 .
$$

In the same way we get for an arbitrary $b>0$

$$
h(x) / P(x) \leqslant e^{1 / 16 b}, \quad \text { for } \quad x \geqslant 1,
$$

i.e., the function $h(x)=x^{b \ln x}$ satisfies condition (3), for $x \geqslant 1$, with the constant $c=e^{1 / 16 b}$.

On the other hand we have $u_{n}=\sup \left\{x^{n} / h(x), x \geqslant 1\right\}=e^{n^{2} / 4 b}$. Consequently we get $v_{n}=u_{n+1} / u_{n}=e^{n / 2 b-1 / 4 b}$ and $v_{n} / v_{n+1}=e^{-1 / 2 b}$. Hence, by virtue of our corollary, it follows with $d=e^{-1 / 2 b}$ that

$$
\left(1-e^{-1 / 2 b}\right) / 2\left(3-e^{-1 / 2 b}\right) \leqslant x^{b \ln x} \mid \sum_{n=0}^{\infty} x^{n} e^{-n^{2} / 4 b} \leqslant e^{1 / 16 b}, \quad \text { for } \quad x \geqslant 1 .
$$

Now let us turn to the question of whether there exist positive functions h with an arbitrarily strong growth and satisfying $h \sim H$. We shall see that our example stated above represents a natural limit of growth for all functions h satisfying $h \sim H$. This will be proved in

Theorem 3. Let $h: R_{0}^{+} \rightarrow R^{+}$be rapidly growing with $h \sim H$. Then there exist constants $a>1$ and $b>0$ with

$$
h(x) \leqslant x^{b \ln x}, \quad \text { for } \quad x \geqslant a \text {. }
$$

Proof of Theorem 3. We set for $t \geqslant \ln v_{0}, f(t)=\ln P\left(e^{t}\right)$, i.e., $f(t)=$ $m t-\ln u_{m}$, for $t \in\left[\ln v_{m-1}, \ln v_{m}\right), m \in \mathbb{N}$. By virtue of Theorem 2 there exist a positive constant $d<1$ and an integer z with $v_{n} \leqslant d v_{n+z}, \forall n \in \mathbb{N}_{0}$. We define for every $n \in \mathbb{N}_{0}, t_{n}=\ln v_{0}+n p$, where $p=-\ln d$. It follows that

$$
\begin{equation*}
p \leqslant \ln v_{n+z}-\ln v_{n}, \quad \forall n \in \mathbb{N}_{0} . \tag{17}
\end{equation*}
$$

Based on the above definition of the function f we can find for every $n \in \mathbb{N}$ an index m_{n} with

$$
\begin{equation*}
f\left(t_{n}\right)=m_{n} t_{n}-\ln u_{m_{n}}, \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\ln v_{m_{n}-1} \leqslant t_{n}<\ln v_{m_{n}} . \tag{19}
\end{equation*}
$$

Using (17) and (19) we obtain $\ln v_{n z}=\ln v_{0}+\sum_{i=1}^{n}\left(\ln v_{i z}-\ln v_{(i-1) z}\right) \geqslant$ $\ln v_{0}+n p \geqslant \ln v_{m_{n}-1}$, i.e., $v_{n z} \geqslant v_{m_{n}-1}$, and therefore we have

$$
\begin{equation*}
m_{n} \leqslant n z+1 . \tag{20}
\end{equation*}
$$

By (18), (20), and the convexity of f we have for every $n \in \mathbb{N}\left(f\left(t_{n}\right)-\right.$ $\left.f\left(t_{n-1}\right)\right) / p=\left(f\left(t_{n}\right)-f\left(t_{n-1}\right)\right) /\left(t_{n}-t_{n-1}\right) \leqslant f_{l}^{\prime}\left(t_{n}\right) \leqslant m_{n} \leqslant n z+1$, i.e.,

$$
\begin{equation*}
f\left(t_{n}\right)-f\left(t_{n-1}\right) \leqslant p(n z+1) . \tag{21}
\end{equation*}
$$

Using (21) we obtain for every constant $s>0, t \geqslant s$, and $t \in\left[t_{n-1}, t_{n}\right)$

$$
\begin{aligned}
f(t) & =f\left(t_{0}\right)+\sum_{i=1}^{n-1}\left(f\left(t_{i}\right)-f\left(t_{i-1}\right)\right)+f(t)-f\left(t_{n-1}\right) \\
& \leqslant f\left(t_{0}\right)+\sum_{i=1}^{n}\left(f\left(t_{i}\right)-f\left(t_{i-1}\right)\right) \leqslant f\left(t_{0}\right)+\sum_{i=1}^{n} p(i z+1) \\
& =f\left(\ln v_{0}\right)+p z n(n+1) / 2+p n \\
& \leqslant f\left(\ln v_{0}\right)+p z\left(\left(t-\ln v_{0}\right) / p+1\right)\left(\left(t-\ln v_{0}\right) / p+2\right) / 2+p\left(\left(t-\ln v_{0}\right) / p+1\right) \\
& \leqslant r t^{2}
\end{aligned}
$$

where $r>0$ is a suitable constant which depends on s, p, z, and v_{0}. Hence we get

$$
\begin{equation*}
P(x) \leqslant x^{r \ln x}, \quad \text { for } \quad x \geqslant e^{s} . \tag{22}
\end{equation*}
$$

From our assumption $h \sim H$ it follows, in view of Theorem 1, that there exists a constant $c>0$ with $h(x) / P(x) \leqslant c$, for $x \geqslant 0$. Comparing this result with inequality (22) we obtain for suitable constants $a>1$ and $b>0$, $h(x) \leqslant x^{b \ln x}$, for $x \geqslant a$.

In some mathematical disciplines even power series with non-negative coefficients are of special importance. An example of this kind is the theory of orthogonal polynomials for weights on the real line. D. S. Lubinsky $[6,7]$ introduces for a weight $h(x)=e^{Q(x)}$, where Q is even and convex, the following power series

$$
G_{Q}(x)=1+\sum_{n=1}^{\infty}\left(x / q_{n}\right)^{2 n} e^{2 Q\left(q_{n}\right) n^{-1 / 2}}
$$

with $q_{n}^{n} e^{-Q\left(q_{n}\right)}=\max \left\{x^{n} e^{-Q(x)}, x \geqslant 0\right\}$. Accordingly defined is $G_{Q / 2}(x)$ (see also V. Totik [11]).

Using Laplace's method he demonstrates that

$$
G_{Q}(x)=\sqrt{\pi T(x)} e^{2 Q(x)}\left(1+O\left(Q(x)^{-1 / 2}(\ln x)^{-3 / 2}\right)\right), \quad x \rightarrow \infty,
$$

where $T(x)=1+x Q^{\prime \prime}(x) / Q^{\prime}(x)$.
This type of result is useful in the above-mentioned theory. The power series G_{Q} and $G_{Q / 2}$ can be expressed in terms of the sequence $u_{n}=$ $\sup \left\{x^{n} / h(x), x \geqslant 0\right\}$ as

$$
G_{Q}(x)=1+\sum_{n=1}^{\infty}\left(x^{n} / u_{n}\right)^{2} n^{-1 / 2}
$$

and

$$
G_{Q / 2}(x)=1+\sum_{n=1}^{\infty}\left(x^{2 n} / u_{2 n}\right) n^{-1 / 2}, \quad \text { respectively }
$$

As a direct consequence of Theorem 2 we are able to formulate a necessary and sufficient condition for $h(x) \sim \sum x^{2 n} / u_{2 n}$, namely, that the asymptotic relation $h(x) \sim \sum x^{2 n} / u_{2 n}$ is synonymous with $h(\sqrt{x}) \sim \sum x^{n} / u_{2 n}$ and, using Theorem 2, with

$$
w_{n} \leqslant d w_{n+z}, \quad \forall n \in \mathbb{N}_{0}
$$

where $w_{n}=u_{2(n+1)} / u_{2 n}\left(\sup \left\{x^{n} / h(\sqrt{x}), x \geqslant 0\right\}=\sup \left\{x^{2 n} / h(x), x \geqslant 0\right\}=u_{2 n}\right)$.

More generally we get in the same way conditions for $h(x) \sim \sum x^{k n} / u_{k n}$ for an arbitrary $k \in \mathbb{N}$.

3. THE CONSTRUCTION OF A POWER SERIES $N(x)=\sum c_{n} x^{n}, c_{n} \geqslant 0$, WITH $h \sim N$

Theorems 2 and 3 show that the asymptotic relation $h \sim H$ is not given for every function h satisfying (3). But at least we have the existence of a power series $N(x)=\sum c_{n} x^{n}, c_{n} \geqslant 0$, with $h \sim N$. We shall be concerned with the construction of this power series in the following

Theorem 4. Let h: $R_{0}^{+} \rightarrow R^{+}$be rapidly growing and let it satisfy (3). Then for every positive $d<1$ we can select a subsequence $\left\{u_{n_{k}}, k \in \mathbb{N}_{0}\right\}$ from the sequence $\left\{u_{n}, n \in \mathbb{N}_{0}\right\}$ with

$$
(1-d) / 4 \leqslant h(x) / \sum_{k=0}^{\infty} x^{n_{k}} / u_{n_{k}} \leqslant c / d, \quad \text { for } \quad x \geqslant 0 .
$$

Proof of Theorem 4. To construct the desired subsequence $\left\{u_{n_{k}}, k \in \mathbb{N}_{0}\right\}$ we formulate the next

Lemma 3. We define for every $n, s \in \mathbb{N}_{0}$

$$
A(n, s)=u_{n} v_{n}^{s} / u_{n+s} \quad \text { and } \quad B(n, s)=u_{n+s} v_{n+s}^{-s} / u_{n} .
$$

Then we have
(a) $A(n, s+1) \leqslant A(n, s)$ and $B(n, s+1) \leqslant B(n, s)$.
(b) $\lim _{s \rightarrow \infty} A(n, s)=\lim _{s \rightarrow \infty} B(n, s)=0$.
(c) $A(n, s) \leqslant 1$ and $B(n, s) \leqslant 1$.

Proof. (a) The sequence v_{n} is increasing (proof of Theorem 2); hence for $s \geqslant 1$ we have

$$
A(n, s)=\prod_{i=0}^{s-1} v_{n} / v_{n+i} \geqslant \prod_{i=0}^{s} v_{n} / v_{n+i}=A(n, s+1),
$$

and

$$
B(n, s)=\prod_{i=0}^{s-1} v_{n+i} / v_{n+s} \geqslant \prod_{i=0}^{s} v_{n+i} / v_{n+s+1}=B(n, s+1) .
$$

(b) To verify that $v_{n} \rightarrow \infty$, for $n \rightarrow \infty$, we assume the contrary $v_{n} \leqslant c$, $\forall n \in \mathbb{N}_{0}$, for some constant $c>0$. Then we have

$$
\begin{equation*}
u_{n} \leqslant c^{n} u_{0}, \quad \forall n \in \mathbb{N}_{0} \tag{i}
\end{equation*}
$$

On the other hand we get

$$
\begin{equation*}
u_{n}=\sup \left\{x^{n} / h(x), x \geqslant 0\right\} \geqslant(2 c)^{n} / h(2 c) . \tag{ii}
\end{equation*}
$$

Comparing (i) and (ii) it follows that $(2 c)^{n} / h(2 c) \leqslant c^{n} u_{0}$, i.e., $2^{n} \leqslant u_{0} h(2 c)$, $\forall n \in \mathbb{N}_{0}$, which is impossible.

As a consequence of $\lim _{n \rightarrow \infty} v_{n}=\infty$ we obtain for every $n \in \mathbb{N}_{0}$

$$
A(n, s)=\prod_{i=0}^{s-1} v_{n} / v_{n+i} \leqslant v_{n} / v_{n+s-1} \rightarrow 0, \quad \text { for } \quad s \rightarrow \infty,
$$

and in the same way $\lim _{s \rightarrow \infty} B(n, s)=0$.
(c) follows immediately from part (a) of this lemma and the fact that $B(n, 0)=A(n, 0)=1$.

Now we are able to define for every positive $d<1$ a subsequence $\left\{u_{n_{k}}, k \in \mathbb{N}_{0}\right\}$ of the sequence $\left\{u_{n}, n \in \mathbb{N}_{0}\right\}$ with the desired property described in Theorem 4.

Put $u_{n_{0}}=u_{0}$. We define $u_{n_{k+1}}$, supposing that $u_{n_{k}}$ is already defined, as follows: Let us denote with $s_{k} \in \mathbb{N}$ the smallest integer with

$$
\begin{equation*}
A\left(n_{k}, s_{k}\right)<d \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
B\left(n_{k}, s_{k}\right)<d . \tag{24}
\end{equation*}
$$

Due to Lemma 3 this choice of $s_{k} \in \mathbb{N}$ is always possible and therefore at least one of the following inequalities $(25,26)$ holds,

$$
\begin{equation*}
A\left(n_{k}, s_{k}-1\right) \geqslant d \tag{25}
\end{equation*}
$$

or

$$
\begin{equation*}
B\left(n_{k}, s_{k}-1\right) \geqslant d . \tag{26}
\end{equation*}
$$

We define $u_{n_{k+1}}=u_{n_{k}+s_{k}-1}$. Since $A\left(n_{k}, 1\right)=1$ we have $s_{k} \geqslant 2, \forall k \in \mathbb{N}_{0}$.

In connection with (23) and Lemma 3(a) it follows that

$$
\begin{equation*}
u_{n_{k}} v_{n_{k}}^{n_{k}-n_{k}} / u_{n_{k+2}}=A\left(n_{k}, n_{k+2}-n_{k}\right)=A\left(n_{k}, s_{k}+s_{k+1}-2\right) \leqslant A\left(n_{k}, s_{k}\right)<d . \tag{27}
\end{equation*}
$$

Using (24) and Lemma 3(a) we get

$$
\begin{equation*}
u_{n_{k+2}} v_{n_{k+2}}^{n_{k}-n_{k+2} / u_{n_{k}}}=B\left(n_{k}, n_{k+2}-n_{k}\right)=B\left(n_{k}, s_{k}+s_{k+1}-2\right) \leqslant B\left(n_{k}, s_{k}\right)<d . \tag{28}
\end{equation*}
$$

With the notation $P_{1}(x)=\max \left\{x^{n_{k}} / u_{n_{k}}, k \in \mathbb{N}_{0}\right\}$, for $x \geqslant 0$, we shall prove the following

Lemma 4. (a) For $m \geqslant k \geqslant 3$ and $x \in\left[v_{n_{m-1}}, v_{n_{m}}\right.$) we have

$$
\left(x^{n_{m-k} / u_{n_{m-k}}}\right) / P_{1}(x) \leqslant \begin{cases}d^{k / 2-1}, & \text { for even } k, \\ d^{(k-1) / 2}, & \text { for odd } k .\end{cases}
$$

(b) For $m \in \mathbb{N}, k \geqslant 2$ and $x \in\left[v_{n_{m-1}}, v_{n_{m}}\right)$ we have

$$
\left(x^{\left.n_{m+k} / u_{n_{m+k}}\right) / P_{1}(x) \leqslant\left\{\begin{array}{ll}
d^{k / 2}, & \text { for even } k, \\
d^{(k-1) / 2}, & \text { for odd } k .
\end{array} . . \begin{array}{ll}
\end{array}\right)}\right.
$$

Proof. First of all we set for every $m \in \mathbb{N}_{0} y_{n_{m}}(x)=x^{n_{m}} / u_{n_{m}}$. Then P_{1} has the following representation in the interval $\left[v_{n_{m-1}}, v_{n_{m}}\right.$)

$$
P_{1}(x)= \begin{cases}y_{n_{m-1}}(x), & \text { for } \quad x \in\left[v_{n_{m-1}}, w_{m}\right), \\ y_{n_{m}}(x), & \text { for } x \in\left[w_{m}, v_{n_{m}}\right),\end{cases}
$$

where $w_{m}=\left(u_{n_{m}} / u_{n_{m-1}}\right)^{1 /\left(n_{m}-n_{m-1}\right)}$ represents, for every $m \in \mathbb{N}$, the x-coordinate of the intersection-point of $y_{n_{m-1}}(x)$ and $y_{n_{m}}(x)$.

Hence we have for $x \in\left[v_{n_{m-1}}, v_{n_{m}}\right)$

$$
\begin{equation*}
P_{1}(x) \geqslant y_{n_{m-1}}(x) \quad \text { and } \quad P_{1}(x) \geqslant y_{n_{m}}(x) . \tag{29}
\end{equation*}
$$

To prove Lemma 4(a) we get by (29)

$$
\begin{aligned}
\left(x^{n_{m-k} / u_{n_{m-k}}}\right) / P_{1}(x) & \leqslant\left(x^{n_{m-k}} / u_{n_{m-k}}\right) /\left(x^{n_{m-1} / u_{n_{m-1}}}\right) \\
& =u_{n_{m-1}} x^{n_{m-k}-n_{m-1} / u_{n_{m-k}}} \\
& \leqslant u_{n_{m-1}} v_{n_{m-1}}^{n_{m-k}-n_{m-1}} / u_{n_{m-k}}
\end{aligned}
$$

For even $k \geqslant 4$ and using (28) we have

$$
\begin{aligned}
& u_{n_{m-1}} v_{n_{m-1}}^{n_{m-k}-n_{m-1}} / u_{n_{m-k}} \\
& \quad=u_{n_{m-1}-1} v_{n_{m-1}}^{n_{m-2}-n_{m-1}} / u_{n_{m-2}} \prod_{i=1}^{k / 2-1} u_{n_{m-2 i}} v_{n_{m-1}}^{n_{m-2}(i+1)-n_{m-2 i}} / u_{n_{m-2}(i+1)} \\
& \quad \leqslant \prod_{i=1}^{k / 2-1} u_{n_{m-2}} v_{n_{m-2 i}}^{n_{m-2 i}}-n_{m-2 i} / u_{n_{m-2}(i+1)}<d^{k / 2-1},
\end{aligned}
$$

where we use for the first inequality the fact that $u_{n_{m-1}} v_{n_{m-1}}^{n_{m-2}-n_{m-1}} / u_{n_{m-2}}=$ $B\left(n_{m-2}, n_{m-1}-n_{m-2}\right) \leqslant 1$ (Lemma 3(c)). For odd $k \geqslant 3$ and using (28)

$$
\begin{aligned}
u_{n_{m-1}} v_{n_{m-1}}^{n_{m-k}-n_{m-1}} / u_{n_{m-k}} & =\prod_{i=0}^{(k-3) / 2} u_{n_{m-2 i-1}} v_{n_{m-1}}^{n_{m-2 i-3}-n_{m-2 i-1}} / u_{n_{m-2 i-3}} \\
& \leqslant \prod_{i=0}^{(k-3) / 2} u_{n_{m-2 i-1}} v_{n_{m-2 i-1}}^{n_{m-2}-n_{m-2 i-1}} / u_{n_{m-2 i-3}} \\
& <d^{(k-1) / 2} .
\end{aligned}
$$

Now let us prove Lemma 4(b), where we have by (29)

$$
\begin{aligned}
\left(x^{n_{m+k} /} / u_{n_{m+k}}\right) / P_{1}(x) & \leqslant\left(x^{\left.n_{m+k} / u_{n_{m+k}}\right) /\left(x^{n_{m}} / u_{n_{m}}\right)=u_{n_{m}} x^{n_{m+k}-n_{m}} / u_{n_{m+k}}}\right. \\
& \leqslant u_{n_{m}} v_{n_{m}}^{n_{m+k}-n_{m}} / u_{n_{m+k}} .
\end{aligned}
$$

For even $k \geqslant 2$ and using (27) we have

$$
\begin{aligned}
u_{n_{m}} v_{n_{m}}^{n_{m+k}-n_{m}} / u_{n_{m+k}} & =\prod_{i=0}^{k / 2-1} u_{n_{m+2 i}} v_{n_{m}}^{n_{m+2(i+1)}-n_{m+2 i} / u_{n_{m+2}(i+1)}} \\
& \leqslant \prod_{i=0}^{k / 2-1} u_{n_{m+2 i}} v_{n_{m+2 i}}^{n_{m+2}}-n_{m+2 i} / u_{n_{m+2}(i+1)}<d^{k / 2} .
\end{aligned}
$$

Finally for odd $k \geqslant 3$ and again using (27) we get

$$
\begin{aligned}
& u_{n_{m}} v_{n_{m}}^{n_{m+k}-n_{m}} / u_{n_{m+k}} \\
& \quad=u_{n_{m}} v_{n_{m+1}}^{n_{m}-n_{m}} u_{n_{m+1}} \prod_{i=1}^{(k-1) / 2} u_{n_{m+2 i-1}} v_{n_{m}}^{n_{m+2 i+1}-n_{m+2 i-1}} / u_{n_{m+2 i+1}} \\
& \quad \leqslant \prod_{i=1}^{(k-1) / 2} u_{n_{m+2 i-1}} v_{n_{m+2 i-1}}^{n_{m+2}-n_{m+2 i-1} / u_{n_{m+2 i+1}}<d^{(k-1) / 2},}
\end{aligned}
$$

considering that by virtue of Lemma 3(c) we have $u_{n_{m}} v_{n_{m}}^{n_{m+1}-n_{m}} / u_{n_{m+1}}=$ $A\left(n_{m}, n_{m+1}-n_{m}\right) \leqslant 1$.

As a consequence of Lemma 4(a) we get for every $m \geqslant 3$ and $x \in\left[v_{n_{m-1}}, v_{n_{m}}\right.$)

$$
\begin{equation*}
\left(\sum_{k=3}^{m} x^{n_{m-k}} / u_{n_{m-k}}\right) / P_{1}(x) \leqslant 2 \sum_{i=1}^{\infty} d^{i} \tag{30}
\end{equation*}
$$

To verify (30) let us consider the case where m is an even integer. Then we have

$$
\begin{aligned}
& \left(\sum_{k=3}^{m} x^{n_{m-k} / u_{n_{m-k}}}\right) / P_{1}(x) \\
& \quad=\left(\sum_{i=1}^{m / 2-1} x^{n_{m-2 i-1} / u_{n_{m-2 i-1}}}\right) / P_{1}(x)+\left(\sum_{i=2}^{m / 2} x^{n_{m-2 i} / u_{n_{m-2 i}}}\right) / P_{1}(x) \\
& \quad \leqslant \sum_{i=1}^{m / 2-1} d^{i}+\sum_{i=1}^{m / 2-1} d^{i} \leqslant 2 \sum_{i=1}^{\infty} d^{i}
\end{aligned}
$$

Accordingly we treat the case where m is an odd integer.
As a consequence of Lemma $4(\mathrm{~b})$ we get in the same way for every $m \in \mathbb{N}$

$$
\begin{equation*}
\left(\sum_{k=2}^{\infty} x^{n_{m+k}} / u_{n_{m+k}}\right) / P_{1}(x) \leqslant 2 \sum_{i=1}^{\infty} d^{i} \tag{31}
\end{equation*}
$$

Using (30) and (31) we obtain for $m \geqslant 3$ and $x \in\left[v_{n_{m-1}}, v_{n_{m}}\right.$)

$$
\begin{aligned}
& \left(\sum_{k=0}^{\infty} x^{n_{k}} / u_{n_{k}}\right) / P_{1}(x) \\
& =\left(\sum_{k=3}^{m} x^{n_{m-k}} / u_{n_{m-k}}+\sum_{k=1}^{4} x^{n_{m-3+k}} / u_{n_{m-3+k}}+\sum_{k=2}^{\infty} x^{n_{m+k}} / u_{n_{m+k}}\right) / P_{1}(x) \\
& \leqslant 2 \sum_{i=1}^{\infty} d^{i}+4+2 \sum_{i=1}^{\infty} d^{i}=4 /(1-d) .
\end{aligned}
$$

Using only (30) we get the above estimation for $m=2$ and $m=1$. Finally in the interval $x \in\left[0, v_{0}\right)$ we have $P_{1}(x)=1 / u_{0}=P_{1}\left(v_{0}\right)$, and therefore the inequality

$$
\begin{equation*}
1 \leqslant\left(\sum_{k=0}^{\infty} x^{n_{k}} / u_{n_{k}}\right) / P_{1}(x) \leqslant 4 /(1-d) \tag{32}
\end{equation*}
$$

holds for every $x \geqslant 0$.

We have already mentioned (proof of Theorem 2, (8)) that for $x \in\left[v_{n_{m-1}}, v_{n_{m}}\right.$) the function P has the representation

$$
\begin{equation*}
P(x)=x^{i} / u_{i}, \quad \text { for } \quad x \in\left[v_{i-1}, v_{i}\right), \tag{33}
\end{equation*}
$$

where $n_{m-1}<i \leqslant n_{m}$.
With the aid of Lemma 1 we get for $m \in \mathbb{N}, x \leqslant v_{n_{m-1}}$ and $i>n_{m-1}$

$$
\begin{equation*}
v_{n_{m-1}}^{i} / u_{i} \leqslant v_{n_{m-1}}^{n_{m-1}} / u_{n_{m-1}}, \tag{34}
\end{equation*}
$$

and for $x=v_{n_{m}}$ and $i \leqslant n_{m}$

$$
\begin{equation*}
v_{n_{m}}^{i} / u_{i} \leqslant v_{n_{m}}^{n_{m}} / u_{n_{m}} . \tag{35}
\end{equation*}
$$

Based on our definition of the subsequence $\left\{u_{n_{k}}, k \in \mathbb{N}_{0}\right\}$ we have for every $k \in \mathbb{N}_{0}$ that at least one of the inequalities (25), (26) holds. Hence for every $m \in \mathbb{N}$ at least one of the following estimations (36), (37) holds:

$$
\begin{align*}
& u_{n_{m-1}} v_{n_{m-1}-n_{m-1}}^{n_{n}} u_{n_{m}}=A\left(n_{m-1}, s_{m-1}-1\right) \geqslant d, \tag{36}\\
& u_{n_{m}} v_{n_{m}}^{n_{m-1}-n_{m}} / u_{n_{m-1}}=B\left(n_{m-1}, s_{m-1}-1\right) \geqslant d . \tag{37}
\end{align*}
$$

First let us assume that (36) holds. Then for $x \in\left[v_{n_{m-1}}, v_{n_{m}}\right.$) we get by (29), (33), and (34)

$$
\begin{aligned}
P_{1}(x) / P(x) & =P_{1}(x) /\left(x^{i} / u_{i}\right) \geqslant\left(x^{n_{m}} / u_{n_{m}}\right) /\left(x^{i} / u_{i}\right) \geqslant\left(v_{n_{m-1}}^{n_{m}} / u_{n_{m}}\right) /\left(v_{n_{m-1}}^{i} / u_{i}\right) \\
& \geqslant\left(v_{n_{m-1}}^{n_{m}} / u_{n_{m}}\right) /\left(v_{n_{m-1}}^{n_{m-1}} / u_{n_{m-1}}\right)=u_{n_{m-1}} v_{n_{m-1}}^{n_{m-1}-n_{m-1}} / u_{n_{m}} \geqslant d .
\end{aligned}
$$

Now let us assume that (37) holds. Then we get by (29), (33), and (35)

$$
\begin{aligned}
P_{1}(x) / P(x) & =P_{1}(x) /\left(x^{i} / u_{i}\right) \geqslant\left(x^{n_{m-1}} / u_{n_{m-1}}\right) /\left(x^{i} / u_{i}\right) \geqslant\left(v_{n_{m-1}}^{n_{m-1}} / u_{n_{m-1}}\right) /\left(v_{n_{m}}^{i} / u_{i}\right) \\
& \geqslant\left(v_{n_{m}}^{n_{m-1}} / u_{n_{m-1}}\right) /\left(v_{n_{m}}^{n_{m}} / u_{n_{m}}\right)=u_{n_{m}} v_{n_{m}}^{n_{m-1}-n_{m}} / u_{n_{m-1}} \geqslant d .
\end{aligned}
$$

In both cases, (36) and (37), we get for $m \in \mathbb{N}$ and $x \in\left[v_{n_{m-1}}, v_{n_{m}}\right.$)

$$
P_{1}(x) / P(x) \geqslant d .
$$

For $x \in\left[0, v_{0}\right)$ we have $P_{1}(x)=P(x)=1 / u_{0}$. Hence it follows that

$$
\begin{equation*}
1 \geqslant P_{1}(x) / P(x) \geqslant d, \quad \text { for } \quad x \geqslant 0 . \tag{38}
\end{equation*}
$$

Comparing (32), (38), and our assumption (3) we finally obtain

$$
(1-d) / 4 \leqslant h(x) / \sum_{k=0}^{\infty} x^{n_{k}} / u_{n_{k}} \leqslant c / d, \quad \text { for } \quad x \geqslant 0 .
$$

Remarks. (a) In [4] Erdős and Kövari construct a power series $N(x)=\sum c_{n} x^{n}, c_{n} \geqslant 0$, with $M \sim N$, where $M(x)$ is the maximum modulus of an entire function $f(z), z \in \mathbb{C}$. Their construction is mainly based on the convexity of the function $F(t)=\ln M\left(e^{t}\right)$ and the fact that $M(x)$ is the maximum modulus of an entire function.

The construction method shown as proof of Theorem 4 for the power series $N(x)=\sum c_{n} x^{n}, \quad c_{n} \geqslant 0$, with $h \sim N$, gets rid of all additional requirements on $h(x)$. We only assume that $h(x)$ grows faster than any power of x at infinity, to ensure that $N(x)$ does not represent a polynomial.
(b) Very often even power series are of special importance (see for example page 9). Regarding $h(\sqrt{x})$ instead of $h(x)$ in Theorem 4 and 1 , respectively, we get an even power series $N(x)=\sum c_{n} x^{2 n}, c_{n} \geqslant 0$, with $h \sim N$.

REFERENCES

1. N. I. Ahiezer, On the weighted approximation of continuous functions by polynomials on the entire number axis, Amer. Math. Soc. Transl. Ser. 222 (1962), 95-138.
2. E. J. Akutowicz, Weighted approximation on the real axis, Jahresbericht DMV68 (1966), 113-139.
3. J. Clunie and T. Kövari, On integral functions having prescribed asymptotic growth 2 , Canad. J. Math. 20 (1968), 7-20.
4. P. Erdős and T. Kövari, On the maximum modulus of entire functions, Acta Math. Acad. Sci. Hung. 7 (1956), 305-316.
5. M. P. Koosis, Sur l'approximation pondérée par des polynômes et par des sommes d'exponentielles imaginaires, Ann. Sci. École Norm. Sup. (3) 81 (1964), 387-408.
6. D. S. Lubinsky, Gaussian quadrature, weights on the whole real line and even entire functions with nonnegative even order derivatives, J. Approx. Theory 46 (1986), 297-313.
7. D. S. Lubinsky, "Strong Asymptotics for Extremal Errors and Polynomials Associated with Erdős Type Weights," Pitman Research Notes in Mathematics, Vol. 202, Longman, Harlow/Essex, 1989.
8. S. N. Mergelyan, Weighted approximation by polynomials, Amer. Math. Soc. Transl. Ser. 210 (1958), 59-106.
9. U. Schmid, On power series with non-negative coefficients, Complex Variables 18 (1992), 187-192.
10. U. Schmid, On the approximation of positive functions by power series, J. Approx. Theory 83 (1995), 342-346.
11. V. Totik, "Weighted Approximation with Varying Weight," Springer Lecture Notes in Mathematics, Vol. 1569, pp. 89, Springer-Verlag, Berlin/New York, 1994.
